【题目】根据下列条件求二次函数解析式
(1)已知一个二次函数的图象经过了点A(0,﹣1),B(1,0),C(﹣1,2);
(2)已知抛物线顶点P(﹣1,﹣8),且过点A(0,﹣6);
【答案】(1)y=2x2﹣x﹣1 (2)y=2x2+4x﹣6
【解析】
(1)设二次函数解析式为一般式y=ax2+bx+c,然后把点A、B、C三点的坐标代入得到关于a、b、c的方程组,然后解方程组求出a、b、c的值即可得到抛物线解析式;
(1)由于已知顶点坐标,则设顶点式y=a(x+1)2-8,然后把(0,-6)代入求出a即可;
解:(1)设抛物线解析式为y=ax2+bx+c,
根据题意得: ,
解得: ,
∴抛物线解析式为y=2x2﹣x﹣1;
(2)设抛物线解析式为y=a(x+1)2﹣8,
把(0,﹣6)代入得a﹣8=﹣6,解得a=2,
∴抛物线解析式为y=2(x+1)2﹣8=2x2+4x﹣6.
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx经过点A(﹣4,﹣4)和点B(m,0),且m≠0.
(1)若该抛物线的对称轴经过点A,如图,请根据观察图象说明此时y的最小值及m的值;
(2)若m=4,求抛物线的解析式(也称关系式),并判断抛物线的开口方向.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:线段
(1)请用尺规作一个菱形,使它的两条对角线,.
(注意:不能在已知线段上作图,要求保留作图痕迹,不写作法)
(2)若,,求:菱形的面积?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,在矩形ABCD中,AB=4,BC=6,点E为线段AB上一动点(不与点A. 点B重合),先将矩形ABCD沿CE折叠,使点B落在点F处,CF交AD于点H.
(1)求证:△AEG∽△DHC;
(2)若折叠过程中,CF与AD的交点H恰好是AD的中点时,求tan∠BEC的值;
(3)若折叠后,点B的对应F落在矩形ABCD的对称轴上,求此时AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数与轴交点恰好是二次函数与的其中一个交点,已知二次函数图象的对称轴为,并与轴的交点为.
(1)求二次函数的解析式;
(2)设该二次函数与一次函数的另一个交点为点,连接,求三角形的面积。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F,AB=6cm,AD=8cm.
(1)求证:△BDF是等腰三角形;
(2)如图2,过点D作DG∥BE,交BC于点G,连结FG交BD于点O.判断四边形FBGD的形状,并说明理由.
(3)在(2)的条件下,求FG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB,
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;
(3)若点E在x轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,写出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com