精英家教网 > 初中数学 > 题目详情
已知梯形ABCD中,AD∥BC,对角线AC,BD交于O,△AOD的面积为4,△BOC的面积为9,则梯形ABCD的面积为( )
A.21
B.22
C.25
D.26
【答案】分析:先利用面积求出相似三角形对应边的比,再利用等高不同底求出另外两个三角形的面积,四个三角形的面积之和就是梯形面积.
解答:解:如右图所示,
∵AD∥BC,
∴△AOD∽△COB,
∵S△AOD=4,S△BOC=9,
∴OD:OB=2:3,
∵△AOD,△AOB是同高不同底的三角形,
∴S△AOD:S△AOB=2:3,
∵S△AOD=4,
∴S△AOB=6,
同理可求S△COD=6,
∴S梯形ABCD=4+9+6+6=25,
故选C.
点评:本题考查了梯形、三角形的面积、相似三角形的判定和性质.解题的关键是利用三角形相似,由面积之比求出边之比,然后再利用同高不等底的三角形的面积比等于它们的底之比,求出另外两个三角形的面积,最后求出梯形的面积.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、如图,已知梯形ABCD中,AD∥BC,AB=CD=AD,AC,BD相交于O点,∠BCD=60°,则下列说法错误的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知梯形ABCD中,AD∥BC,∠ABC=60°,BD=2
3
,AE为梯形的高,且BE=1,则AD=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知梯形ABCD中,AD∥CB,E,F分别是BD,AC的中点,BD平分∠ABC.
(1)求证:AE⊥BD;    (2)若AD=4,BC=14,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、已知梯形ABCD中,AD∥BC,AB=CD,∠B=45°,它的高为2cm,中位线长为5cm,则上底AD等于
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知梯形ABCD中,AD∥BC,∠B=40°,∠C=70°,AD=3,BC=7,则腰AB=
4
4

查看答案和解析>>

同步练习册答案