精英家教网 > 初中数学 > 题目详情

【题目】已知射线与直线交于点平分于点

1)如图1,若

①求的度数;

②试说明平分

2)如图2,设的度数为,当为多少度时,射线的三等分线?并说明理由.

【答案】1)①150°;②说明见解析;(218°45°,说明见解析.

【解析】

1)①根据题意可求∠BOF=30°,由平角定义可求∠DOF的度数

②通过题意可求∠AOD=BOG=60°,即可得OD平分∠AOG

2)设∠AOD=β,分∠AOD=2DOG,或∠DOG=2AOD,两种情况讨论,根据题意可列方程,可求β的值,即可得α的值.

1)①∵AEOF

∴∠A=BOF

OF平分∠COF

∴∠BOC=60°,∠COF=30°

∴∠DOF=180-30°=150°

②∵∠BOC=60°

∴∠AOD=60°

OFOG

∴∠BOF+FOG=90°

∴∠BOG=60°

∵∠BOG+DOG+AOD=180°

∴∠DOG=60°=AOD

OD平分∠AOG

2)设∠AOD=β

∵射线OD是∠AOG的三等分线

∴∠AOD=2DOG,或∠DOG=2AOD

若∠AOD=2DOG

∴∠DOG=β

∵∠BOC=AODOF平分∠BOC

∴∠BOF=β

OFOG

∴∠BOG=90-α

∵∠BOG+DOG+AOD=180°

β+90-β+β=180°

∴∠β=90°

∴∠BOF=45°

OFAE

∴∠A=BOF=45°

α=45°

若∠DOG=2AOD=2β

∵∠BOC=AODOF平分∠BOC

∴∠BOF=β

OFOG

∴∠BOG=90-α

∵∠BOG+DOG+AOD=180°

2β+90-β+β=180°

∴∠β=36°

∴∠BOF=18°

OFAE

∴∠A=BOF=18°

α=18°

综上所述α18°45°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我国南宋著名数学家秦九韶的著作《数书九章》里记载着这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题的大意是:有一块三角形沙田,三条边长分别为5里;12里;13里,问这块沙田面积有多大?题中的1里=0.5千米,则该沙田的面积为( )

A.3平方千米B.7.5平方千米C.15平方千米D.30平方千米

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB、CD相交于点O.已知∠BOD=75°,OE把∠AOC分成两个角,且∠AOE:∠EOC=2:3.

(1)求∠AOE的度数;

(2)若OF平分∠BOE,问:OB是∠DOF的平分线吗?试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将相同的矩形卡片,按如图方式摆放在一个直角上,每个矩形卡片长为2,宽为1,依此类推,摆放2014个时,实线部分长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【问题情境】

如图1,四边形ABCD是正方形,MBC边上的一点,ECD边的中点,AE平分∠DAM

【探究展示】

1)证明:AM=AD+MC

2AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.

【拓展延伸】

3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了更好的治理西流湖水质,保护环境,市治污公司决定购买 10 台污水处理设备.现有 AB 两种型号的设备,其中每台的价格,月处理污水量如下表:

A

B

价格(万元/台)

a

b

处理污水量(吨/月)

240

200

经调查:购买一台 A 型设备比购买一台 B 型设备多 2 万元,购买 2 A 型设备比购买 3 B 型设备少 6 万元.

1)求 ab 的值;

2)经预算:市治污公司购买污水处理设备的资金不超过 105 万元,你认为该公司 有哪几种购买方案;

3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于 2040 吨,为了节 约资金,请你为治污公司设计一种最省钱的购买方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直角三角形中,,直线过点

1)当时,如图①,分别过点于点于点.求证:

2)当时,如图②,点与点关于直线对称,连接,动点从点出发,以每秒1个单位长度的速度沿边向终点运动,同时动点从点出发,以每秒3个单位的速度沿向终点运动,点到达相应的终点时停止运动,过点于点,过点于点,设运动时间为秒.

①用含的代数式表示

②直接写出当全等时的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一元二次方程mx2-2mx+m-2=0.

(1)若方程有两个不等实数根,求m的取值范围;

(2)若方程的两实数根为x1,x2,且|x1-x2|=1,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一个转盘被平均分成12,每份上写上不同的数字,游戏方法:先猜数后转动转盘,若指针指向的数字与所猜的数一致,则猜数者获胜.现提供三种猜数方法:

猜是奇数”,或是偶数”;

猜是大于10的数”,或是不大于10的数”;

猜是“3的倍数”,或是不是3的倍数.

如果你是猜数者,你愿意选择哪一种猜数方法?怎样猜?并说明理由.

查看答案和解析>>

同步练习册答案