精英家教网 > 初中数学 > 题目详情
20、已知:如图,⊙O1和⊙O2相交于A、B两点,动点P在⊙O2上,且在⊙1外,直线PA、PB分别交⊙O1于C、D,问:⊙O1的弦CD的长是否随点P的运动而发生变化?如果发生变化,请你确定CD最长和最短时P的位置,如果不发生变化,请你给出证明.
分析:连接AD、AB,∠ADP在⊙O1中所对的弦为AB,所以∠ADP为定值,∠P在⊙O2中所对的弦为AB,所以∠P为定值.再利用三角形内角与外角的关系求出∠CAD为定值,则弦CD为定值,与P的位置无关.
解答:解:当点P运动时,CD的长保持不变,A、B是⊙O1与⊙O2的交点,弦AB与点P的位置关系无关,
连接AD,
∵∠ADP在⊙O1中所对的弦为AB,
∴∠ADP为定值,
∵∠P在⊙O2中所对的弦为AB,
∴∠P为定值,
∵∠CAD=∠ADP+∠P,
∴∠CAD为定值,
∵在⊙O中∠CAD对弦CD,
∴CD的长与点P的位置无关.
点评:本题为动态性题目,解答此题的关键是熟知圆周角与弦的关系,即在同圆或等圆中相等的圆周角所对的弦相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,⊙O1和⊙O2相交于A、B两点,经过A的直线CD与⊙O1交于点C、与⊙O2交于点D,经过点B的直线EF与⊙O1交于点E、与⊙O2交于点F,连接CE、DF.若∠AO1E=100°,则∠D的度数为
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,⊙O1和⊙O2外切于点A,直线BD切⊙O1于点B,交⊙O2于点C、D,直线DA交⊙精英家教网O1于点E.
(1)求证:∠BAC=∠ABC+∠D;
(2)求证:AB2=AC•AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,⊙O1和⊙O2相交于A、B两点,过B点作⊙O1的切线交⊙O2于D点,连接DA并延精英家教网长⊙O1相交于C点,连接BC,过A点作AE∥BC与⊙O相交于E点,与BD相交于F点.
(1)求证:EF•BC=DE•AC;
(2)若AD=3,AC=1,AF=
3
,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2001•黄冈)已知,如图,⊙O1和⊙O2内切于点P,过点P的直线交⊙O1于点D,交⊙O2于点E;DA与⊙O2相切,切点为C.
(1)求证:PC平分∠APD;
(2)PE=3,PA=6,求PC的长.

查看答案和解析>>

同步练习册答案