精英家教网 > 初中数学 > 题目详情
正方形A1B1C1OA2B2C2C1A3B3C3C2,…按如图所示的方式放置.点A1A2A3,…和点C1C2C3,…分别在直线(k>0)和x轴上,已知点B1(1,1),B2(3,2), 则Bn的坐标是_______
A1的坐标是(0,1),A2的坐标是:(1,2),
根据题意得: b=1,k+b=2,
解得: b=1,k=1.
则直线的解析式是:y=x+1.
∵A1B1=1,点B2的坐标为(3,2),
∴A1的纵坐标是1,A2的纵坐标是2.
在直线y=x+1中,令x=3,则纵坐标是:3+1=4=22
则A4的横坐标是:1+2+4=7,则A4的纵坐标是:7+1=8=23
据此可以得到An的纵坐标是:2n-1,横坐标是:2n-1-1.
由图知,An的纵坐标与Bn的纵坐标相等,
B3的横坐标为1+2+4=7
∴Bn的横坐标为2n-1
Bn的坐标是(2n-1, 2n-1)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知成正比例函数关系,且时,
(1)写出之间的函数关系式;
(2)求当时,的值;
(3)求当时,的值。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知一次函数y=kx+b(k≠0)经过(2,﹣1)、(﹣3,4)两点,则它的图象不经过(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

直线y=x–1和y=x+3的位置关系是_____,由此可知方程组解的情况为________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知在平面直角坐标系中,直线               与x轴,y轴相交于A,B两点,
直线       与AB相交于C点,点D从点O出发,以每秒1个单位的速度沿x轴向右运
动到点A,过点D作x轴的垂线,分别交直线        和直线               于P,Q两点(P点不与C点重合),以PQ为边向左作正△PQR,设正△PQR与△OBC重叠部分的面积为S(平方单位),点D的运动时间为t(秒)
(1)求点A,B,C的坐标; (2)若点           正好在△PQR的某边上,求t的值;
(3)求S关于t的函数关系式,并写出相应t的取值范围,     
求出D在整个运动过程中s的最大值。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

现有一个种植总面积为540m2的矩形塑料温棚,分垄间隔套种草莓和西红柿共24垄,种植的草莓或西红柿单种农作物的总垄数不低于10垄,又不超过14垄(垄数为正整数),它们的占地面积、产量、利润分别如下:
 
占地面积(m/垄)
产量(千克/垄)
利润(元/千克)
西红柿
30
160
1.1
草莓
15
50
1.6
(1)若设草莓共种植了垄,通过计算说明共有几种种植方案?分别是哪几种?
(2)在这几种种植方案中,哪种方案获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上以每秒1个单位的速度由C向B运动。
(1) 求梯形ODPC的面积S与时间t的函数关系式。
(2) t为何值时,四边形PODB是平行四边形?
(3) 在线段PB上是否存在一点Q,使得ODQP为菱形。若存在求t值,若不存在,说明理由。
(4) 当△OPD为等腰三角形时,求点P的坐标。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一次函数的图象如图所示,当-3 <  < 3时, 的取值范围是(    )
A.>4B.0<<2C.0<<4D.2<<4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

)对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1﹣x2|+|y1﹣y2|叫做P1、P2两点间的直角距离,记作d(P1,P2).
(1)已知O为坐标原点,动点P(x,y)满足d(O,P)=1,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形;
(2)设P0(x0,y0)是一定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的直角距离.试求点M(2,1)到直线y=x+2的直角距离.

查看答案和解析>>

同步练习册答案