精英家教网 > 初中数学 > 题目详情

如图在△ABC中,BF平分∠ABC,CF平分∠ACB,∠A=50°,则∠BFC的大小等于________.

115°
分析:根据角平分线的定义有∠ABC=2∠2,∠ACB=2∠1,根据三角形内角和定理得∠ABC+∠ACB+∠A=180°,则2∠2+2∠1+∠A=180°,即有∠2+∠1=90°-∠A,再根据三角形内角和定理得到∠2+∠1+∠BFC=180°,则90°-∠A+∠BFC=180°,于是有∠BFC=90°+∠A,把∠A=50°代入计算即可得到∠BFC的度数.
解答:如图,
∵BF平分∠ABC,CF平分∠ACB,
∴∠ABC=2∠2,∠ACB=2∠1,
又∵∠ABC+∠ACB+∠A=180°,
∴2∠2+2∠1+∠A=180°,
∴∠2+∠1=90°-∠A,
又∵∠2+∠1+∠BFC=180°,
∴90°-∠A+∠BFC=180°,
∴∠BFC=90°+∠A,
而∠A=50°,
∴∠BFC=90°+×50°=115°.
故答案为115°.
点评:本题考查了三角形内角和定理:三角形的内角和为180°.也考查了角平分线的定义.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

5、如图在△ABC中,∠ACB=90°,CD是边AB上的高.那么图中与∠A相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图在△ABC中,∠ABC=50°,∠ACB=75°,点O是内心,则∠BOC的度数为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在△ABC中,∠A=45°,tanB=3,BC=
10
,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图在△ABC中,AD是BC边上的高线,CE是AB边上的中线,DG平分∠CDE,DC=AE,
求证:CG=EG.
证明:∵AD⊥BC
∴∠ADB=90°
∵CE是AB边上的中线
∴E是AB的中点
∴DE=
1
2
AB
1
2
AB
(直角三角形斜边上的中线等于斜边的一半)
又∵AE=
1
2
AB
∴AE=DE
∵AE=CD
∴DE=CD
即△DCE是
等腰
等腰
三角形
∵DG平分∠CDE
∴CG=EG(
等腰三角形三线合一
等腰三角形三线合一

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在△ABC中,AD垂直平分BC,AD=8,BC=10,E、F是AD上的两点,则图中阴影部分的面积是
20
20

查看答案和解析>>

同步练习册答案