精英家教网 > 初中数学 > 题目详情

【题目】如图,在RtABC中,∠ABC90ABBC,将△ABC绕点A逆时针旋转60,得到△ADE,连接BE,则BE的长是_________

【答案】

【解析】

首先考虑到BE所在的三角形并不是特殊三角形,所以猜想到要求BE,可能需要构造直角三角形.由旋转的性质可知,AC=AE,∠CAE=60°,故△ACE是等边三角形,可证明△ABE与△CBE全等,可得到∠ABE=45°,∠AEB=30°,再证△AFB和△AFE是直角三角形,然后在根据勾股定理求解.

连结CE,设BEAC相交于点F,如图所示.

RtABC中,AB=BC,∠ABC=90°,∴∠BCA=BAC=45°.

AB=BC=,∴AC==4

RtABC绕点A逆时针旋转60°与RtADE重合,∴∠BAC=DAE=45°,AC=AE

又∵旋转角为60°,∴∠BAD=CAE=60°,∴△ACE是等边三角形,∴AC=CE=AE=4

在△ABE与△CBE中,∵,∴△ABE≌△CBESSS),∴∠ABE=CBE=45°,∠CEB=AEB=30°,∴∠BFA=180°﹣45°﹣45°=90°,∴∠AFB=AFE=90°.

RtABF中,由勾股定理得:BF=AF2

又在RtAFE中,∠AEF=30°,∠AFE=90°,FEAF=2,∴BE=BF+FE=

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC中,A=40°B=70°,CE平分ACB,CDAB于D,DFCE,则CDF= 度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在(

A.在∠A、∠B两内角平分线的交点处

B.ACBC两边垂直平分线的交点处

C.ACBC两边高线的交点处

D.ACBC两边中线的交点处

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某小型企业实行工资与业绩挂钩制度,工人工资分为ABCD四个档次.小明对该企业三月份工人工资进行调查,并根据收集到的数据,绘制了如下尚不完整的统计表与扇形统计图.

根据上面提供的信息,回答下列问题:

(1)求该企业共有多少人?

(2)请将统计表补充完整;

(3)扇形统计图中“C档次”的扇形所对的圆心角是 度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长度为1个单位长度的小正方形组成的正方形中,点ABC在小正方形的顶点上.

1)在图中画出与ABC关于直线l成轴对称的AB′C′

2ABC的面积为   

3)以AC为边作与ABC全等的三角形,则可作出   个三角形与ABC全等;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为更好地开展传统文化进校园活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布直方图.

最喜爱的传统文化项目类型频数分布表

根据以上信息完成下列问题:

(1)直接写出频数分布表中a的值;

(2)补全频数分布直方图;

(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,∠AOB内一点PP1P2分别P是关于OAOB的对称点,P1P2OAM,交OBN,若P1P26cm,则△PMN的周长是(  )

A.3cmB.4cmC.5cmD.6cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,AB=AC,∠BAC=90°,直线l为经过点A的任一直线,BD⊥l于D,CE⊥AE,若BD>CE,试问:

(1)AD与CE的大小关系如何?请说明理由;

(2)线段BD,DE,CE之间的数量之间关系如何?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面ABC如图2所示,BC=10米,∠ABC=ACB=36°,改建后顶点DBA的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD的长.(结果精确到0.1米)

(参考数据:sin18°≈0.31,cos18°≈0.95.tan18°≈0.32,sin36°≈0.59.cos36°≈0.81,tan36°≈0.73)

查看答案和解析>>

同步练习册答案