精英家教网 > 初中数学 > 题目详情
如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.
(1)判断直线CD和⊙O的位置关系,并说明理由.
(2)过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.
解:(1)直线CD和⊙O的位置关系是相切,理由见解析
(2)BE=6.

试题分析:(1)连接OD,可知由直径所对的圆周角是直角可得∠DAB+∠DBA=90°,再由∠CDA=∠CBD可得∠CDA+∠ADO=90°,从而得∠CDO=90°,根据切线的判定即可得出;
(2)由已知利用勾股定理可求得DC的长,根据切线长定理有DE=EB,根据勾股定理得出方程,求出方程的解即可.
试题解析:(1)直线CD和⊙O的位置关系是相切,
理由是:连接OD,
∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠DAB+∠DBA=90°,
∵∠CDA=∠CBD,
∴∠DAB+∠CDA=90°,
∵OD=OA,
∴∠DAB=∠ADO,
∴∠CDA+∠ADO=90°,
即OD⊥CE,
∴直线CD是⊙O的切线,
即直线CD和⊙O的位置关系是相切;
(2)∵AC=2,⊙O的半径是3,
∴OC=2+3=5,OD=3,
在Rt△CDO中,由勾股定理得:CD=4,
∵CE切⊙O于D,EB切⊙O于B,
∴DE=EB,∠CBE=90°,
设DE=EB=x,
在Rt△CBE中,由勾股定理得:CE2=BE2+BC2
则(4+x)2=x2+(5+3)2
解得:x=6,
即BE=6.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.
(1)求证:∠AEC=90°;
(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;
(3)若DC=2,求DH的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,四边形ABCD为平行四边形,以CD为直径作⊙O,⊙O与边BC相交于点F,⊙O的切线DE与边AB相交于点E,且AE=3EB.
(1)求证:△ADE∽△CDF;
(2)当CF:FB=1:2时,求⊙O与ABCD的面积之比.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,C是⊙O上的一点,过点A作AD⊥CD于点D,交⊙O于点E,且=
(1)求证:CD是⊙O的切线;
(2)若tan∠CAB=,BC=3,求DE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

半径为2的圆中,弦AB、AC的长分别2和2
2
,则∠BAC的度数是(  )
A.15°B.15°或45°C.15°或75°D.15°或105°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在正方形ABCD中,对角线BD的长为.若将BD绕点B旋转后,点D落在BC延长线上的点D′处,点D经过的路径为,则图中阴影部分的面积是(  )
A.﹣1B.C.D.π﹣2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O上,∠ADC=54°,则∠BAC的度数等于    

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A = 70°,则∠BOC的度数为 (   )

A.100°       B.110°      C.120°         D.130°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如果半径分别为2cm和3cm的两圆外切,那么这两个圆的圆心距是
A.1cmB.5cmC.1cm或5cmD.小于1cm.

查看答案和解析>>

同步练习册答案