精英家教网 > 初中数学 > 题目详情
如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.
(1)求证:∠AEC=90°;
(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;
(3)若DC=2,求DH的长.
(1)证明见解析;
(2)四边形AOCD为菱形;
(3)DH=2

试题分析:(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出∠AEC=90°;
(2)四边形AOCD为菱形.由(1)得,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);
(3)连接OD.根据四边形AOCD为菱形,得△OAD是等边三角形,则∠AOD=60°,再由DH⊥AB于点F,AB为直径,在Rt△OFD中,根据sin∠AOD=,求得DH的长.
试题解析:(1)连接OC,

∵EC与⊙O切点C,
∴OC⊥EC,
∴∠OCE=90°,
∵点CD是半圆O的三等分点,

∴∠DAC=∠CAB,
∵OA=OC,
∴∠CAB=∠OCA,
∴∠DAC=∠OCA,
∴AE∥OC(内错角相等,两直线平行)
∴∠AEC+∠OCE=180°,
∴∠AEC=90°;
(2)四边形AOCD为菱形.理由是:

∴∠DCA=∠CAB,
∴CD∥OA,
又∵AE∥OC,
∴四边形AOCD是平行四边形,
∵OA=OC,
∴平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);
(3)连接OD.
 
∵四边形AOCD为菱形,
∴OA=AD=DC=2,
∵OA=OD,
∴OA=OD=AD=2,
∴△OAD是等边三角形,
∴∠AOD=60°,
∵DH⊥AB于点F,AB为直径,
∴DH=2DF,
在Rt△OFD中,sin∠AOD=
∴DF=ODsin∠AOD=2sin60°=
∴DH=2DF=2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:
方案一:直接锯一个半径最大的圆;
方案二:圆心O1,O2分别在CD,AB上,半径分别是O1C,O2A,锯两个外切的半圆拼成一个圆;
方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;
方案四:锯一块小矩形BCEF拼接到矩形AEFD下面,并利用拼成的木板锯一个尽可能大的圆。
(1)写出方案一中的圆的半径;
(2)通过计算说明方案二和方案三中,哪个圆的半径较大?
(3)在方案四中,设CE=),圆的半径为
①求关于的函数解析式;
②当取何值时圆的半径最大?最大半径是多少?并说明四种方案中,哪一个圆形桌面的半径最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt中,,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于E.
(1)求证:点E是边BC的中点;
(2)求证:
(3)当以点O、D、E、C为顶点的四边形是正方形时,求证:△ABC是等腰直角三角形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.
(1)判断直线CD和⊙O的位置关系,并说明理由.
(2)过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图, AE是⊙O直径,D是⊙O上一点,连结AD并延长使AD=DC,连结CE交⊙O于点B,连结AB.过点E的直线与AC的延长线交于点F,且∠F=∠CED.
(1)求证:EF是⊙O切线;
(2)若CD=CF=2,求BE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一个圆锥的高为3
3
cm,侧面展开图是半圆.
求:(1)圆锥的母线长与底面半径之比;
(2)锥角的大小(锥角为过圆锥高的平面上两母线的夹角);
(3)圆锥的侧面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,正方形的边长为a,以各边为直径在正方形内画半圆,所围成的图形(阴影部分)的面积为(  )
A.πa2-a2B.2πa2-a2C.
1
2
πa2-a2
D.a2-
1
4
πa2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,过点B,A,C作
BAC
,如图所示.若AB=4,AC=2,S1-S2=
π
4
,则S3-S4的值是(  )
A.
29π
4
B.
23π
4
C.
11π
4
D.
4

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若两圆的半径分别为2cm和6cm,圆心距为了8cm,则两圆的位置关系为(  )
A.外切B.相交C.内切D.外离

查看答案和解析>>

同步练习册答案