精英家教网 > 初中数学 > 题目详情

【题目】如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角和坝底宽AD.(结果保留根号)

【答案】AD=7.5+

【解析】试题分析:

由题意可知tan=,由此可得∠=30°结合CE=4可得DE=;过点BBFAD于点F,则四边形BFEC是矩形,由此可得BF=CE=4EF=BC=4.5,在RtABF中由勾股定理可得AF=3,从而可得AD=AF+EF+DE=7.5+.

试题解析

由题意可知:tan=CE=4

∴∠=30°DE=

BBF⊥AD于点F,又∵∠CEA=90°BC∥AD

∴∠BFA=∠BFE=90°=∠BCE

四边形BFEC是矩形,

∴BF=CE=4,EF=BC=4.5,

∴在RtABFAF=

AD=AF+EF+DE=7.5+.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知AB⊙O的直径,点C⊙O上,过点C的直线与AB的延长线交于点PAC=PC∠COB=2∠PCB.

1)求证:PC⊙O的切线;

2)求证:BC=AB

3)点M是弧AB的中点,CMAB于点N,若AB=4,求MNMC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,ACBD相交于点OOAC的中点,AD∥BC.

1)求证:四边形ABCD是平行四边形

2)若AC⊥BD,且AB=4,则四边形ABCD的周长为________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程式应用题.

天河食品公司收购了200吨新鲜柿子,保质期15天,该公司有两种加工技术,一种是加工为普通柿饼,另一种是加工为特级霜降柿饼,也可以不需加工直接销售.相关信息见表:

品种

每天可加工数量(吨)

每吨获利(元)

新鲜柿子

不需加工

1000

普通柿饼

16

5000

特级霜降柿饼

8

8000

由于生产条件的限制,两种加工方式不能同时进行,为此公司研制了两种可行方案:

方案1:尽可能多地生产为特级霜降柿饼,没来得及加工的新鲜柿子,在市场上直接销售;

方案2:先将部分新鲜柿子加工为特级霜降柿饼,再将剩余的新鲜柿子加工为普通柿饼,恰好15天完成.

请问:哪种方案获利更多?获利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数:当x≥0时,它们对应的函数值相等,我们把这样的两个函数称作互为友好函数,例如:一次函数y=x-2,它的友好函数为y=

1)直接写出一次函数y=-2x+1的友好函数.

2)已知点A(25)在一次函数y=ax-1的友好函数的图象上,求a的值.

3)已知点B(m )在一次函数y= x-1的友好函数的图象上,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,M△ABC的边BC的中点,AN平分∠BACBN⊥AN于点N,延长BNAC于点D,已知AB=10BC=15MN=3

1)求证:BN=DN

2)求△ABC的周长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ADBC边上的高, .

1)求证:ACBD

2)若,直接写出AD的长是__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD中,AB=1,∠A=60°EFGH是矩形,矩形的顶点都在菱形的边上.设AE=AH=x0x1),矩形的面积为S

1)求S关于x的函数解析式;

2)当EFGH是正方形时,求S的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1x1,y1P2x2,y2,可通过构造直角三角形利用图1得到结论:,他还利用图2证明了线段P1P2的中点Px,y的坐标公式:

1)已知点M2,1,N2,5,则线段MN长度为

2)请求出以点A2,2,B2,0,C3,1D为顶点的平行四边形顶点D的坐标;

3)如图3OL满足y2xx0,点P2,1OLx轴正半轴所夹的内部一点,请在OLx轴上分别找出点EF,使PEF的周长最小,求出周长的最小值.

查看答案和解析>>

同步练习册答案