精英家教网 > 初中数学 > 题目详情

【题目】如图,将一副三角尺的直角顶点叠放在点C处,∠D=30°,∠B=45°,求:
(1)若∠DCE=35°,求∠ACB的度数.
(2)若∠ACB=120°,求∠DCE的度数.
(3)猜想∠ACB和∠DCE的关系,并说明理由.

【答案】
(1)解:∵∠ECB=90°,∠DCE=35°

∴∠DCB=90°﹣35°=55°

∵∠ACD=90°

∴∠ACB=∠ACD+∠DCB=145°


(2)解:∵∠ACB=120°,∠ACD=90°

∴∠DCB=120°﹣90°=30°

∵∠ECB=90°

∴∠DCE=90°﹣30°=60°


(3)解:猜想得∠ACB+∠DCE=180°(或∠ACB与∠DCE互补)

理由:∵∠ECB=90°,∠ACD=90°

∴∠ACB=∠ACD+∠DCB=90°+∠DCB

∠DCE=∠ECB﹣∠DCB=90°﹣∠DCB

∴∠ACB+∠DCE=180°


【解析】(1))由∠ACD=∠BCE=90°,根据图形可知∠ACB=180°﹣∠DCE;(2)由∠ACD=∠BCE=90°,根据图形可知∠DCE=180°﹣∠ACB;(3)由∠ACD=∠BCE=90°,得出∠ACE+∠DCE+∠DCE+∠BCD=180°,即可证出∠ACB+∠DCE=180°.
【考点精析】利用余角和补角的特征对题目进行判断即可得到答案,需要熟知互余、互补是指两个角的数量关系,与两个角的位置无关.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列四个数中,绝对值最小的是(  )

A. 1 B. ﹣2 C. ﹣0.1 D. ﹣1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 (2016山东潍坊第20题)今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.

评估成绩n(分)

评定等级

频数

90≤n≤100

A

2

80≤n<90

B

70≤n<80

C

15

n<70

D

6

根据以上信息解答下列问题:

(1)求m的值;

(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)

(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,以正方形ABCD的对角线为边作菱形AEFC,若点B、E、F在同一直线上,求∠EAB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知m+nmn分别是9的两个平方根,m+np的立方根是1,求n+p的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】枣庄)

已知:在直角坐标平面内,ABC三个顶点的坐标分别为A(0,3),B(3,4),C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)

(1) 在备用图(1)中,画出ABC向下平移4个单位长度得到ABC,点C的坐标是________.

(2) 在备用图(2)中,以点B为位似中心,在网格内画出ABC,使ABCABC位似,且位似比为2︰1,点C的坐标是________.

(3) ABC的面积是________平方单位.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点P在第三象限,到x轴的距离为3,到y轴的距离为5,则点P的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一个直角三角形纸片ACB,其中ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上点,连接EF.

(1)图①,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF=3SEDF,求AE的长;

(2)如图②,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MFCA.

①试判断四边形AEMF的形状,并证明你的结论;

②求EF的长;

(3)如图③,若FE的延长线与BC的延长线交于点N,CN=1,CE=,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2x-16=3x+52x-3x=5+16,在此变形中,是在原方程的两边同时加上了__________

查看答案和解析>>

同步练习册答案