精英家教网 > 初中数学 > 题目详情

【题目】如图,C、EB、D、F分别在∠GAH的两边上,且AB=BC=CD=DE=EF,若∠A=18°,则∠GEF的度数是( )

A. 80° B. 90° C. 100° D. 108°

【答案】B

【解析】

根据等腰三角形性质和三角形内角和为180°逐步算出答案.

解:∵AB=BC,

∴∠ACB=A=18°,

∴∠CBD=A+ACB=36°,

BC=CD,

∴∠CDB=CBD=36°,

∴∠DCE=A+CDA=18°+36°=54°,

CD=DE,

∴∠CED=DCE=54°,

∴∠EDF=A+AED=18°+54°=72°,

DE=EF,

∴∠EFD=EDF=72°,

∴∠GEF=A+AFE=18°+72°=90°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】试验与探究:我们知道分数写为小数即,反之,无限循环小数写成分数即.一般地,任何一个无限循环小数都可以写成分数形式.现在就以为例进行讨论:设x,由0.7777…,可知,10xx7.77…0.777…7,即10xx7,解方程得,于是得

请仿照上述例题完成下列各题:

(1)请你把无限循环小数写成分数,即_____

(2)你能化无限循环小数为分数吗?请仿照上述例子求解之.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,转盘被等分成6个扇形,每个扇形上依次标有数字1,2,3,4,5,6.在游戏中特别规定:当指针指向边界时,重新转动转盘.
(1)自由转动转盘,当它停止转动时,指针指向的数大于4的概率为
(2)请用画树状图法或列表法等方式求出“两次转动转盘,指针指向的数都大于4”的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司开发出一种高科技电子节能产品,投资2500万元一次性购买整套生产设备,此外生产每件产品需成本20元,每年还需投入500万广告费,按规定该产品的售价不得低于30元/件且不得高于70元/件,该产品的年销售量y(万件)与售价x(元/件)之间的函数关系如下表:

x(元/件)

30

31

70

y(万件)

120

119

80


(1)求y与x的函数关系式,并写出x的取值范围;
(2)第一年公司是盈利还是亏损?冰球出当盈利最大或亏损最小时该产品的售价;
(3)在(2)的前提下,即在第一年盈利最大或亏损最小时,第二年公司重新确定产品定价,能否使两年盈利3500万元?若能,求第二年产品的售价;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.

(1)求证:∠AEB=∠ADC;

(2)连接DE,若ADC=105°,求BED的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC=11,BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DFABAE的延长线于点E,则DF的长为(

A. 4.5 B. 5 C. 5.5 D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AE⊥BC于点E点,延长BC至F点使CF=BE,连接AF,DE,DF.
(1)求证:四边形AEFD是矩形;
(2)若AB=6,DE=8,BF=10,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用白铁皮做罐头盒,每张铁皮可做盒身25个,或做盒底40个,一个盒身与两个盒底配成一套罐头盒.现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?

①设用x张制盒身,可得方程2×25x40(36x)

②设用x张制盒身,可得方程25x2×40(36x)

③设用x张制盒身,y张制盒底,可得方程组

④设用x张制盒身,y张制盒底,可得方程组;其中正确的是( )

A. ①④ B. ②③ C. ②④ D. ①③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车共10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.

1)请你帮助学校设计所有可行的租车方案.

2)如果甲车的租金为每辆2 000元,乙车的租金为每辆1 800元,问哪种可行方案使租车费用最省?

查看答案和解析>>

同步练习册答案