精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部.

(1)如图①,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO;(不写作法与证明,保留作图痕迹)
(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长.

【答案】
(1)

解:如图①所示,射线OC即为所求;


(2)

解:如图,圆心O的运动路径长为

过点O1作O1D⊥BC、O1F⊥AC、O1G⊥AB,垂足分别为点D、F、G,

过点O作OE⊥BC,垂足为点E,连接O2B,

过点O2作O2H⊥AB,O2I⊥AC,垂足分别为点H、I,

在Rt△ABC中,∠ACB=90°、∠A=30°,

∴AC= = =9 ,AB=2BC=18,∠ABC=60°,

∴CABC=9+9 +18=27+9

∵O1D⊥BC、O1G⊥AB,

∴D、G为切点,

∴BD=BG,

在Rt△O1BD和Rt△O1BG中,

∴△O1BD≌△O1BG(HL),

∴∠O1BG=∠O1BD=30°,

在Rt△O1BD中,∠O1DB=90°,∠O1BD=30°,

∴BD= = =2

∴OO1=9﹣2﹣2 =7﹣2

∵O1D=OE=2,O1D⊥BC,OE⊥BC,

∴O1D∥OE,且O1D=OE,

∴四边形OEDO1为平行四边形,

∵∠OED=90°,

∴四边形OEDO1为矩形,

同理四边形O1O2HG、四边形OO2IF、四边形OECF为矩形,

又OE=OF,

∴四边形OECF为正方形,

∵∠O1GH=∠CDO1=90°,∠ABC=60°,

∴∠GO1D=120°,

又∵∠FO1D=∠O2O1G=90°,

∴∠OO1O2=360°﹣90°﹣90°=60°=∠ABC,

同理,∠O1OO2=90°,

∴△OO1O2∽△CBA,

= ,即 =

=15+ ,即圆心O运动的路径长为15+


【解析】(1)作∠ACB的平分线得出圆的一条弦,再作此弦的中垂线可得圆心O,作射线CO即可;(2)添加如图所示辅助线,圆心O的运动路径长为 ,先求出△ABC的三边长度,得出其周长,证四边形OEDO1、四边形O1O2HG、四边形OO2IF均为矩形、四边形OECF为正方形,得出∠OO1O2=60°=∠ABC、∠O1OO2=90°,从而知△OO1O2∽△CBA,利用相似三角形的性质即可得出答案.
【考点精析】本题主要考查了切线的性质定理的相关知识点,需要掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为2,连接BD,先以D为圆心,DA为半径作弧AC,再以D为圆心,DB为半径作弧BE,且D、C、E三点共线,则图中两个阴影部分的面积之和是(
A. π
B. +1
C.π
D.π+1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,SBPG=1,则SAEPH=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题
(1)计算:﹣(2﹣ )﹣(π﹣3.14)0+(1﹣cos30°)×( 2
(2)先化简,再求值: ÷ ,其中a=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,曲线l是由函数y= 在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点A(﹣4 ,4 ),B(2 ,2 )的直线与曲线l相交于点M、N,则△OMN的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论: ①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=﹣ x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).

(1)求抛物线的解析式;
(2)求证:直线l是⊙M的切线;
(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题: 体重频数分布表

组边

体重(千克)

人数

A

45≤x<50

12

B

50≤x<55

m

C

55≤x<60

80

D

60≤x<65

40

E

65≤x<70

16


(1)填空:①m=(直接写出结果); ②在扇形统计图中,C组所在扇形的圆心角的度数等于度;
(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请用直尺和圆规在所给的两个矩形中各作一个不为正方形的菱形,且菱形的四个顶点都在矩形的边上,面积相同的图形视为同一种.(保留作图痕迹).

查看答案和解析>>

同步练习册答案