精英家教网 > 初中数学 > 题目详情
3.如图,在平面直角坐标系xOy中,双曲线y=$\frac{m}{x}$与直线y=-2x+2交于点A(-1,a).
(1)求a,m的值;
(2)点P是双曲线y=$\frac{m}{x}$上一点,且OP与直线y=-2x+2平行,求点P的坐标.

分析 (1)将A坐标代入一次函数解析式中即可求得a的值,将A(-1,4)坐标代入反比例解析式中即可求得m的值;
(2)根据题意求得直线OP的解析式,然后根据直线OP的解析式和反比例函数的解析式即可求得P的坐标.

解答 解:(1)∵点A的坐标是(-1,a),在直线y=-2x+2上,
∴a=-2×(-1)+2=4,
∴点A的坐标是(-1,4),代入反比例函数y=$\frac{m}{x}$,
∴m=-4.
(2)∵OP与直线y=-2x+2平行,
∴OP的解析式为y=-2x,
∵点P是双曲线y=-$\frac{4}{x}$上一点,
∴设点P坐标为(x,-$\frac{4}{x}$),
代入到y=-2x中,
∴-$\frac{4}{x}$=-2x,
∴x=$±\sqrt{2}$.
∴点P的坐标为($\sqrt{2}$,-2$\sqrt{2}$)或(-$\sqrt{2}$,2$\sqrt{2}$).

点评 此题考查了一次函数与反比例函数的交点问题,涉及的知识有:反比例函数的图象上点的坐标特征,待定系数法确定函数解析式,熟练掌握待定系数法是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

13.计算2a•3b的结果是(  )
A.5abB.3abC.•6abD..6a

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.有5条线段,它们的长度分别为1cm,2cm,3cm,4cm,5cm,以其中三条线段为边长,可组成不同的三角形的个数为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在所给方格纸中,每个小正方形边长都是1,标号为①,②,③的三个三角形均为格点三角形(顶点在方格顶点处).请按要求将图甲中的正方形ABCD、图乙中的平行四边形ABCD分别各自分割成三个三角形,使它们与标号为①,②,③的三个三角形分别对应全等.

注:图甲、图乙在答题卡上,分割线画成实线.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,湖中有一小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,在小道上测得如下数据:AB=60米,∠PAB=45°,∠PBA=30°.请求出小桥PD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,已知四边形ABCD是菱形,DE⊥AB于点E,DF⊥BC于点F,在不添加其他辅助线的情况下,请你找出图中所有的全等三角形,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.
(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3,求BN的长;
(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且EC>DE≥BD,连接AD,AE分别交FG于点M,N,求证:点M,N是线段FG的勾股分割点;
(3)已知点C是线段AB上的一定点,其位置如图3所示,请在BC上画一点D,使点C,D是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画一种情形即可);
(4)如图4,已知点M,N是线段AB的勾股分割点,MN>AM≥BN,△AMC,△MND和△NBE均为等边三角形,AE分别交CM,DM,DN于点F,G,H,若H是DN的中点,试探究S△AMF,S△BEN和S四边形MNHG的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如果一个扇形的弧长为2,半径为1,则这个扇形的面积为1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,抛物线y=x2-bx+c交x轴于点A(1,0),交y轴于点B,对称轴是x=2.
(1)求抛物线的解析式;
(2)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案