精英家教网 > 初中数学 > 题目详情

【题目】某林业部门要考察某幼苗的成活率,于是进行了试验,下表中记录了这种幼苗在一定条件下移植的成活情况,则下列说法不正确的是(

移植总数

400

1500

3500

7000

9000

14000

成活数

369

1335

3203

6335

8073

12628

成活的频率

0923

0.890

0915

0.905

0.897

0.902

A.由此估计这种幼苗在此条件下成活的概率约为0.9

B.如果在此条件下再移植这种幼苗20000株,则必定成活18000

C.可以用试验次数累计最多时的频率作为概率的估计值

D.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率

【答案】B

【解析】

大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率即可得到答案

解:由此估计这种幼苗在此条件下成活的概率约为0.9,故A选项正确;

如果在此条件下再移植这种幼苗20000株,则大约成活18000株,故B选项错误;

可以用试验次数累计最多时的频率作为概率的估计值,故C选项正确;

在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率,故D选项正确.

故选:B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是(  )

A. 两个转盘转出蓝色的概率一样大

B. 如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了

C. 先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率不同

D. 游戏者配成紫色的概率为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场经营A种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.

1)不妨设该种品牌玩具的销售单价为x元(x40),请用含x的代数式表示该玩具的销售量.

2)若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于450件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?

(3)该商场计划将(2)中所得的利润的一部分资金采购一批B种玩具并转手出售,根据市场调查并准备两种方案,方案①:如果月初出售,可获利15%,并可用本和利再投资C种玩具,到月末又可获利10%;方案②:如果只到月末出售可直接获利30%,但要另支付仓库保管费350元,请问商场如何使用这笔资金,采用哪种方案获利较多?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,将正方形绕点逆时针旋转后得到正方形,依此方式,绕点连续旋转2019次得到正方形,如果点的坐标为(10),那么点的坐标为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,,则经过三点的圆弧所在圆的圆心的坐标为__________;点坐标为,连接,直线的位置关系是___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】汛期到来,山洪暴发.下表记录了某水库内水位的变化情况,其中表示时间(单位:)表示水位高度(单位:),当时,达到警戒水位,开始开闸放水.

0

2

4

6

8

10

12

14

16

18

20

14

15

16

17

18

14.4

12

10.3

9

8

7.2

(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.

(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.

(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半径为1的⊙O的直径,点C在⊙O上,∠CAB30°D为劣弧CB的中点,点P是直径AB上一个动点,则PC+PD的最小值为(

A.1B.2C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知,A20),C0,﹣1),若P为线段OA上一动点,则CP+AP的最小值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形AOBC放置在平面直角坐标系xOy中,边OAy轴的正半轴上,边OBx轴的正半轴上,抛物线的顶点为F,对称轴交AC于点E,且抛物线经过点A02),点C,点D30).∠AOB的平分线是OE,交抛物线对称轴左侧于点H,连接HF

1)求该抛物线的解析式;

2)在x轴上有动点M,线段BC上有动点N,求四边形EAMN的周长的最小值;

3)该抛物线上是否存在点P,使得四边形EHFP为平行四边形?如果存在,求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案