精英家教网 > 初中数学 > 题目详情

如图①,已知二次函数的解析式是y=ax2+bx(a>0),顶点为A(1,-1).
(1)a=   
(2)若点P在对称轴右侧的二次函数图像上运动,连结OP,交对称轴于点B,点B关于顶点A的对称点为C,连接PC、OC,求证:∠PCB=∠OCB;
(3)如图②,将抛物线沿直线y=-x作n次平移(n为正整数,n≤12),顶点分别为A1,A2,…,An,横坐标依次为1,2,…,n,各抛物线的对称轴与x轴的交点分别为D1,D2,…,Dn,以线段AnDn为边向右作正方形AnDnEnFn,是否存在点Fn恰好落在其中的一个抛物线上,若存在,求出所有满足条件的正方形边长;若不存在,请说明理由.

(1)1;(2)证明见解析;(3)2,6.

解析试题分析:(1)直接利用顶点坐标,进而代入求出即可;
(2)根据题意得出,进而得出△ODC∽△PHC,求出即可;
(3)由题意得出:A1(1,-1),A2(2,-2),A3(3,-3),…An(n,-n),进而得出F1(2,-1),F2(4,-2),F3(6,-3),…Fn(2n,-n)..,即可分类讨论得出n的值.
试题解析:(1)解:∵二次函数的解析式是y=ax2+bx(a>0),顶点为A(1,-1),

解得:

(2)证明:由(1)得,抛物线的解析式为:y=x2-2x,
设P(m,m2-2m),则直线OP的解析式为:y=(m-2)x,
∴B(1,m-2),∴C(1,-m),
过点P作PH⊥CD于点H,则PH=m-1,CH=m2-m,

∵∠ODC=∠PHC,
∴△ODC∽△PHC,
∴∠PCB=∠OCB;
(3)解:由题意得出:A1(1,-1),A2(2,-2),A3(3,-3),…An(n,-n),
∴F1(2,-1),F2(4,-2),F3(6,-3),…Fn(2n,-n)…
若Fn恰好落在其中的第m个抛物线上(m为正整数,m≤12),
则该抛物线解析式为:y=(x-m)2-m,
将Fn代入得:-n=(2n-m)2-m,
即(2n-m)2=m-n,
∴m-n是一个平方数,只能是0,1,4,9,
当m-n=0时,2n-m=0,∴m=n=0(舍去);
当m-n=1时,2n-m=1或-1,∴n=2或0(舍去);
当m-n=4时,2n-m=2或-2,∴n=2或6;
当m-n=9时,2n-m=3或-3,∴n=6(舍去)或12(舍去).
综上所述,正方形边长n的值可以是2,6.
考点:二次函数综合题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

为深化“携手节能低碳,共建碧水蓝天”活动,发展“低碳经济”,某单位进行技术革新,让可再生资源重新利用.今年1月份,再生资源处理量为40吨,从今年1月1日起,该单位每月再生资源处理量每一个月将提高10吨.月处理成本(元)与月份之间的关系可近似地表示为:,每处理一吨再生资源得到的新产品的售价定为100元.若该单位每月再生资源处理量为y(吨),每月的利润为w(元).
(1)分别求出y与x,w与x的函数关系式;
(2)在今年内该单位哪个月获得利润达到5800元?
(3)随着人们环保意识的增加,该单位需求的可再生资源数量受限.今年三月的再生资源处理量比二月份减少了m%,该新产品的产量也随之减少,其售价比二月份的售价增加了%.四月份,该单位得到国家科委的技术支持,使月处理成本比二月份的降低了%.如果该单位四月份在保持三月份的再生资源处理量和新产品售价的基础上,其利润比二月份的利润减少了60元,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.下列结论:①;②时,;③平行于x轴的直线与两条抛物线有四个交点;④2AB=3AC.其中错误结论的个数是(   )

A.1      B.2      C.3           D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某宾馆有30个房间供游客住宿,当每个房间的房价为每天120元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于210元.设每个房间的房价增加x元(x为10的正整数倍).
(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;
(2)设宾馆一天的利润为w元,求w与x的函数关系式;
(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

实验数据显示,一般成人喝半斤低度白酒后,1.5时内其血液中酒精含量y(毫克/百毫升)与时间(时)的关系可近似地用二次函数刻画;1.5时后(包括1.5时)y与x可近似地用反比例函数(k>0)刻画(如图所示).
(1)根据上述数学模型计算:
①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?
②当=5时,y=45.求k的值.
(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知直线AB:与抛物线交于A、B两点,
(1)直线AB总经过一个定点C,请直接写出点C坐标;
(2)当时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5;
(3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图所示,已知两点A(-1,0),B(4,0),以AB为直径的半圆P交y轴于点C.
(1)求经过A、B、C三点的抛物线的解析式;
(2)设弦AC的垂直平分线交OC于D,连接AD并延长交半圆P于点E,相等吗?请证明你的结论;
(3)设点M为x轴负半轴上一点,OM=AE,是否存在过点M的直线,使该直线与(1)中所得的抛物线的两个交点到y轴的距离相等?若存在,求出这条直线对应函数的解析式;若不存在.请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(11分)如图,已知抛物线y=x2+bx+c经过A(-1,0)、B(4,5)两点,过点B作BC⊥x轴,垂足为C.
(1)求抛物线的解析式;
(2)求tan∠ABO的值;
(3)点M是抛物线上的一个点,直线MN平行于y轴交直线AB于N,如果以M、N、B、C为顶点的四边形是平行四边形,求出点M的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+n与x轴、y轴分别交于B、C两点,抛物线y=ax2+bx+3(a≠0)过C、B两点,交x轴于另一点A,连接AC,且tan∠CAO=3.
(1)求抛物线的解析式;
(2)若点P是射线CB上一点,过点P作x轴的垂线,垂足为H,交抛物线于Q,设P点横坐标为t,线段PQ的长为d,求出d与t之间的函数关系式,并写出相应的自变量t的取值范围;
(3)在(2)的条件下,当点P在线段BC上时,设PH=e,已知d,e是以y为未知数的一元二次方程:y2-(m+3)y+(5m2-2m+13)="0" (m为常数)的两个实数根,点M在抛物线上,连接MQ、MH、PM,且.MP平分∠QMH,求出t值及点M的坐标.

查看答案和解析>>

同步练习册答案