【题目】如图,在ABCD中,∠B=45°,过点C作CE⊥AD于点,连结AC,过点D作DF⊥AC于点F,交CE于点G,连结EF.
(1)若DG=8,求对角线AC的长;
(2)求证:AF+FG=EF.
【答案】(1)8;(2)详见解析.
【解析】
(1)根据平行四边形的性质得到∠ADC=∠B=45°,推出△CDE是等腰直角三角形,得到CE=DE,∠DEC=∠AEC=90°,求得∠EDG=∠ECA,根据全等三角形的性质即可得到结论;
(2)过E作EH⊥EF交DF于H,于是得到∠DEH=∠CEF,根据全等三角形的性质得到EF=EH,DH=CF,求得AF=HG,根据等腰直角三角形的性质即可得到结论.
解:(1)∵在ABCD中,∠B=45°,
∴∠ADC=∠B=45°,
∵CE⊥AD,
∴△CDE是等腰直角三角形,
∴CE=DE,∠DEC=∠AEC=90°,
∵DF⊥AC,
∴∠CFD=∠DEC=90°,
∴∠DGE=∠CGF,
∴∠EDG=∠ECA,
在△DEG≌△CEA中,
,
∴△DEG≌△CEA(ASA),
∴AC=DG=8;
(2)过E作EH⊥EF交DF于H,
∵∠FEH=∠DEC=90°,
∴∠DEH=∠CEF,
∵∠EDH=∠ECF,DE=CE,
在△DEH和△CEF中,
,
∴△DEH≌△CEF(ASA),
∴EF=EH,DH=CF,
∴AC﹣CF=DG﹣DH,
即AF=HG,
∵FH=FG+GH=EF,
∴AF+FG=EF.
科目:初中数学 来源: 题型:
【题目】在□ABCD中,O是AC、BD的交点,过点O 与AC垂直的直线交边AD于点E,若□ABCD的周长为22cm,则△CDE的周长为( ).
A. 8cm B. 10cm C. 11cm D. 12cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长方形ABCD中,AB=8,AD=7.点P是长方形内一动点,点Q是DC边上的动点.若△ABP的面积为12,则AP+BP+PQ的最小值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,一次函数y=﹣x+b的图象与y轴交于点B(0,2),与反比例函数y=的图象交于点A(4,﹣1).
(1)求反比例函数的表达式和一次函数表达式;
(2)如果点P是x轴上的一点,且△ABP的面积是3,求P点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在锐角三角形ABC中,直线l为BC的中垂线,射线m为∠ABC的角平分线,直线l与m相交于点P.若∠BAC=60°,∠ACP=24°,则∠ABP的度数是( )
A. 24° B. 30° C. 32° D. 36°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F.
(1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角: ;所有与∠C相等的角: .
(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) .
① 求∠B的度数;
②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB∥CD,分别探讨下面三个图形中∠AEC与∠EAB,∠ECD之间的关系,请你从所得到的关系中任选一个加以证明.
(1)在图1中,∠AEC与∠EAB,∠ECD之间的关系是:________________.
(2)在图2中,∠AEC与∠EAB,∠ECD之间的关系是:________________.
(3)在图3中,∠AEC与∠EAB,∠ECD之间的关系是:________________.
(4)在图______中,求证:________________.(并写出完整的证明过程)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com