精英家教网 > 初中数学 > 题目详情
如图,已知抛物线y1=-x2+bx+c经过A(1,0),B(0,-2)两点,顶点为D.
(1)求抛物线y1的解析式;
(2)将△AOB绕点A顺时针旋转90°后,得到△AO′B′,将抛物线y1沿对称轴平移后经过点B′,求出平移后所得的抛物线y2 的解析式.
考点:待定系数法求二次函数解析式,二次函数图象与几何变换
专题:计算题
分析:(1)直接把A和B点坐标代入y1=-x2+bx+c得到关于b、c的方程组,然后解方程组求出b、c即可;
(2)根据旋转的性质得到B′点的坐标为(-1,1),再根据二次函数的性质,由于抛物线y1沿对称轴平移后经过点B′,则二次项系数与一次项系数不变,则平移后抛物线y2 的解析式可设为y2=-x2+3x+m,然后把B′点坐标代入求出m即可.
解答:解:(1)根据题意得
-1+b+c=0
c=-2
,解得
b=3
c=-2

所以抛物线y1的解析式为y1=-x2+3x-2;
(2)∵△AOB绕点A顺时针旋转90°后,得到△AO′B′,如图,
∴B′点的坐标为(-1,1),
∵抛物线y1沿对称轴平移后经过点B′,
∴平移后抛物线y2 的解析式可设为y2=-x2+3x+m,
把B′(-1,1)代入得-1-3+m=1,解得m=5,
∴平移后抛物线y2 的解析式为y2=-x2+3x+5.
点评:本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,△ABC和△CDE都是等边三角形,且点A、C、E在一条直线上.AD与BE相等吗?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

若扇形的弧长是10π,半径是15,则扇形的面积是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示第(1)个图形中有6个平行四边形,第(2)个图形中有18个平行四边形,根据上述规律,则第(3)个图形中有
 
个平行四边形,依次下去第n个图形中有
 
个平行四边形.(用含n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

画出一次函数y=2x-2的图象.

查看答案和解析>>

科目:初中数学 来源: 题型:

下列实数中,-
1
7
311
π
2
、-3.14,
25
、0、
3-27
、0.3232232223…(相邻两个3之间依次增加一个2),有理数的个数是(  )
A、2个B、3个C、4个D、5个

查看答案和解析>>

科目:初中数学 来源: 题型:

-|-3|的绝对值是(  )
A、3
B、-3
C、-
1
3
D、
1
3

查看答案和解析>>

科目:初中数学 来源: 题型:

下列各点中,在函数y=
6
x
图象上的是(  )
A、(2,3)
B、(-2,3)
C、(-6,1)
D、(1,-6)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知⊙O1和⊙O2的半径分别为3cm和5cm,O1O2=6cm,则⊙O1和⊙O2的位置关系是
 

查看答案和解析>>

同步练习册答案