【题目】已知:在△ABC中,若△ABC的三边a,b,c满足 a:b: c=5:12:13,判断△ABC的形状.
科目:初中数学 来源: 题型:
【题目】据报载,在“百万家庭低碳行,垃圾分类要先行”活动中,某地区对随机抽取的1000名公民的年龄段分布情况和对垃圾分类所持态度进行调查,并将调查结果分别绘成条形图(图1)、扇形图(图2).
(1)图2中所缺少的百分数是 ;
(2)这次随机调查中,如果公民年龄的中位数是正整数,那么这个中位数所在年龄段是 ____ (填写年龄段);
(3)这次随机调查中,年龄段是“25岁以下”的公民中“不赞成”的有5名,它占“25岁以下”人数的百分数是 ___ ;
(4)如果把所持态度中的“很赞同”和“赞同”统称为“支持”,那么这次被调查公民中“支持”的人有 ____名.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数过(﹣2,4),(﹣4,4)两点.
(1)求二次函数的解析式;
(2)将沿x轴翻折,再向右平移2个单位,得到抛物线,直线y=m(m>0)交于M、N两点,求线段MN的长度(用含m的代数式表示);
(3)在(2)的条件下,、交于A、B两点,如果直线y=m与、的图象形成的封闭曲线交于C、D两点(C在左侧),直线y=﹣m与、的图象形成的封闭曲线交于E、F两点(E在左侧),求证:四边形CEFD是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示的图像反映的过程是:甲乙两人同时从地出发,以各自的速度匀速向地行驶,甲先到地停留半小时后,按原路以另一速度匀速返回,直至与乙相遇.乙的速度为, 表示甲乙两人相距的距离, 表示乙行驶的时间.现有以下个结论:①、两地相距;②点的坐标为;③甲去时的速度为;④甲返回的速度是.以上个结论中正确的是_______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明所在教学楼的每层高度为3.5米,为了测量旗杆MN的高度,他在教学楼一楼的窗台A处测得旗杆顶部M的仰角为45°,他在二楼窗台B处测得M的仰角为31°,已知每层楼的窗台离该层的地面高度均为1米,求旗杆MN的高度;(结果保留两位小数)
(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:
根据图中提供的信息,解答下列问题:
(1)a= ,b= ;
(2)该校八年级学生共有600人,则该年级参加足球活动的人数约 人;
(3)该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有 (写出所有正确结论的序号)
①△CMP∽△BPA;
②四边形AMCB的面积最大值为10;
③当P为BC中点时,AE为线段NP的中垂线;
④线段AM的最小值为;
⑤当△ABP≌△ADN时,BP=.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(8分)看图填空,并在括号内注明理由依据,
解: ∵∠1=30°, ∠2=30°
∴∠1=∠2
∴_______//________(_______________________________________)
又AC⊥AE(已知)
∴∠EAC=90°(______________)
∴∠EAB=∠EAC+∠1=120°
同理: ∠FBG=∠FBD+∠2=_________°.
∴∠EAB=∠FBG(_____________________________________).
∴______________//____________(同位角相等,两直线平行)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com