精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,CD⊥AB,垂足为D.下列条件中,能证明△ABC是直角三角形的有
①∠A+∠B=90°
②AB2=AC2+BC2

④CD2=ADBD.

【答案】①②④
【解析】解:①∵三角形内角和是180°,由①知∠A+∠B=90°,

∴∠ACB=180°﹣(∠A+∠B)=180°﹣90°=90°,

∴△ABC是直角三角形.所以答案是:项①正确.②AB,AC,BC分别为△ABC三个边,由勾股定理的逆定理可知,②正确.③题目所给的比例线段不是△ACB和△CDB的对应边,且夹角不相等,无法证明△ACB与△CDB相似,也就不能得到∠ACB是直角,故③错误;④若△ABC是直角三角形,已知CD⊥AB,

又∵CD2=ADBD,(即

∴△ACD∽△CBD

∴∠ACD=∠B

∴∠ACB=∠ACD+∠DCB=∠B+∠DCB=90°

△ABC是直角三角形

∴所以答案是:项④正确;

所以答案是:①②④.

【考点精析】通过灵活运用勾股定理的逆定理和相似三角形的判定与性质,掌握如果三角形的三边长a、b、c有下面关系:a2+b2=c2,那么这个三角形是直角三角形;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠B=90°,AB=BC=2,AD=1,CD=3.

(1)求∠DAB的度数.

(2)求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.
(1)k的值是
(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y= 图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若 = ,则b的值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰三角形ABC中,AB=ACAHBC,点EAH上一点,延长AH至点F,使FH=EH.

(1)求证:四边形EBFC是菱形;

(2)如果∠BAC=ECF,求证:ACCF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的对角线AC,BD交于点O,点E,F分别是OB,OC上的动点.当动点E,F满足BE=CF时.

(1)写出所有以点EF为顶点的全等三角形;(不得添加辅助线)

(2)求证:AEBF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ABACADABC的角平分线,DEABDFAC,垂足分别为EF,则下列四个结论:①AD上任意一点到点CB的距离相等;②AD上任意一点到ABAC的距离相等;③BDCDADBC④∠BDECDF.其中正确的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠C=90°,AC=BC=2,取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作S1;取BE中点E1 , 作E1D1∥FB,E1F1∥EF,得到四边形E1D1FF1 , 它的面积记作S2 , 照此规律作下去,则S1= , S2017=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是等边三角形,DAB边上一点,以CD为边作等边CDE,使点EA在直线DC的同侧,连接AE,判断AEBC的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】求证:在直角三角形中至少有一个角不大于45°.

已知:如图所示,△ABC中,∠C=90°,求证:∠A,∠B中至少有一个不大于45°.

证明:假设__________,则∠A__________45°,∠B______45°. ∴∠A+B+C>45°+ _______+__________,这与________________________相矛盾. 所以___________不能成立,所以∠A,∠B中至少有一个角不大于45°.

查看答案和解析>>

同步练习册答案