精英家教网 > 初中数学 > 题目详情

【题目】已知三角形的两边长分别为57,则第三边的中线长x的取值范围是( )

A. B. C. D. 无法确定

【答案】C

【解析】

如图所示,延长中线AD使AD=ED,根据全等三角形的判定定理,可证明BDE≌△CDA;由全等性质可知,BE=AC,所以由三边关系可得7-5<AE<7+5;再结合,即可求出AD的取值范围.

根据题意画出图形ABC中线为AD,延长AD使AD=DE.

ADABC的中线,

BD=CD.

AD=ED,ADC=EDB,BD=CD,

∴△BDE≌△CDA,

BE=AC.

在三角形ABE中由三边关系得,7-5<AE<7+5.

AE是中线AD2倍,

∴中线的取值范围为1<AE<6,即1<x<6.

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表: 甲、乙射击成绩统计表

平均数

中位数

方差

命中10环的次数

7

0

1

甲、乙射击成绩折线图

(1)请补全上述图表(请直接在表中填空和补全折线图);
(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;
(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为鼓励节约能源,某电力公司特别出台了新的用电收费标准:当每户每月用电量不超过210度时,收费标准是每度0.5元;当每户每月用电量超过210度时,超出部分的收费标准是每度0.8元.

(1)小林家在4月份用电度,请你用来表示小林家在4月份应付的电费:_________

(2)小林家在12月份交付电费181元,请你利用方程的知识,求小林家在12月份的用电量.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一节数学课上,刘老师请同学们心里想一个非零的有理数,然后把这个数按照下面的程序进行计算后,刘老师立刻说出计算结果.

(1)若小明同学心里想的数是8,请列出算式并计算最后的结果;

(2)小明又试了几个数进行计算,发现结果都相等,于是小明把心里想的这个数记作a(a≠0),并按照程序通过计算进行验证,请你写出这个验证过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在四边形ABCDAC平分∠BADCEABEAEAD+AB.请你猜想∠1和∠2有什么数量关系?并证明你的猜想

猜想   

证明

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,直线CD上有一点O,过点O在直线CD上方作射线OP.将一直角三角尺AOB(∠AOB=90°)的直角顶点放在点O处,一条直角边OA在射线OD上,另一边OB在直线CD上方.将直角三角板绕着点O逆时针旋转.

(1)当直角三角板旋转到如图②的位置,OB恰好平分∠COP时,试证明:OA边恰好平分∠POD.

(2)若射线OP的位置保持不变,且∠COP=50°.当直角三角尺旋转到边AB与射线OC相交时则∠BOC与∠AOP有怎样的数量关系?试画出图形,写出数量关系,并写出说理过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一个粒子在第一象限内及x轴、y轴上运动,在第一分钟,它从原点运动到点(1,0),第二分钟,它从点(1,0)运动到点(1,1),而后它接着按图中箭头所示在与x轴,y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2019分钟时,这个粒子所在位置的坐标是( )

A. (44,5) B. (5,44) C. (44,6) D. (6,44)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不与M、C重合),以AB为直径作⊙O,过点P作⊙O的切线,交AD于点F,切点为E.

(1)求证:OF∥BE;
(2)设BP=x,AF=y,求y关于x的函数解析式,并写出自变量x的取值范围;
(3)延长DC、FP交于点G,连接OE并延长交直线DC于H(图2),问是否存在点P,使△EFO∽△EHG(E、F、O与E、H、G为对应点)?如果存在,试求(2)中x和y的值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案