精英家教网 > 初中数学 > 题目详情
20.在锐角三角形ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1
(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;
(2)如图2,点E为线段AB的中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转的过程中,点P的对应点是点P1,求线段EP1长度的最大值和最小值.

分析 (1)根据旋转的性质得∠A1C1B=∠ACB=45°,BC=BC1,利用等腰三角形的性质得∠CC1B=∠C1CB=45°,于是得到∠CC1A1=∠CC1B+∠A1C1B=90°;
(2)如图1,过点B作BD⊥AC,D为垂足,则点D在线段AC上,在Rt△BCD中利用三角函数可计算出BD=$\frac{5\sqrt{2}}{2}$,则当BP与AC垂直的时候,△ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小,最小值=EP1=BP1-BE=$\frac{5\sqrt{2}}{2}$-2;当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,如图2,EP1最大,最大值=EP1=BC+BE=7.

解答 解:(1)由旋转的性质可得:∠A1C1B=∠ACB=45°,BC=BC1
∴∠CC1B=∠C1CB=45°,
∴∠CC1A1=∠CC1B+∠A1C1B=45°+45°=90°;
(2)如图1,过点B作BD⊥AC,D为垂足,
∵△ABC为锐角三角形,
∴点D在线段AC上,
在Rt△BCD中,BD=BC×sin45°=$\frac{5\sqrt{2}}{2}$,
当P在AC上运动,BP与AC垂直的时候,△ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小,最小值为:EP1=BP1-BE=BD-BE=$\frac{5\sqrt{2}}{2}$-2;
当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,如图2,EP1最大,最大值为:EP1=BC+BE=2+5=7.

点评 本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.如图,AB是⊙O的直径,点E、F分别是OA、OB的中点,且EC⊥AB,FD⊥AB,EC、FD交⊙O于C、D两点,求证:$\widehat{AC}$=$\widehat{BD}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,⊙O的直径CD⊥AB,∠AOC=60°,则∠CDB=30°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.解方程
①(x-3)2+4x(x-3)=0
②$\frac{6x}{{x}^{2}-1}$+$\frac{5}{x-1}$=$\frac{x+4}{x+1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.在数+8.3,-4,-0.8,-$\frac{1}{5}$,0.90,|-$\frac{34}{3}$|,-(-24)中,负分数有-0.8,-$\frac{1}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图所示,△ABC是等边三角形,D是AC的中点,延长BC到E,使CE=$\frac{1}{2}$BC,等于30°的角有4个.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.若不等式组$\left\{\begin{array}{l}{x-1<0}\\{x>a}\end{array}\right.$无解,则a的取值范围是a≥1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.
求证:OE=DC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.AC是菱形ABCD的对角线,点E、F分别在边AB、AD上,且BE=DF.
求证:△ACE≌△ACF.

查看答案和解析>>

同步练习册答案