精英家教网 > 初中数学 > 题目详情
在△ABC中,∠BAC=50°,若O是△ABC的外心,∠BOC=
100°
100°
;若O是内心,则∠BOC=
115°
115°
分析:已知了点O是△ABC的外心,那么∠A、∠BOC即为同弧所对的圆周角和圆心角,根据圆周角定理即可得到∠BOC的度数;利用内心的定义,OB,OC都是角平分线,因此可求出∠OBC与∠OCB的和,从而得到∠BOC的度数.
解答:解:由于点O是△ABC的外心,所以在△ABC的外接圆⊙O中,
∠BAC、∠BOC同对着弧BC;
由圆周角定理得:∠BOC=2∠BAC=100°,
故答案为:100°;

∵O是△ABC的内心,
∴OB,OC分别平分∠ABC,∠ACB,
∴∠OBC+∠OCB=
180°-50°
2
=65°,
∴∠BOC=180°-65°=115°.
故答案为:115°.
点评:此题主要考查了三角形的外接圆以及圆周角定理的相关知识和理解三角形内心的定义,记住三角形内角和定理是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动精英家教网;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,设运动时间为x.
(1)当x为何值时,PQ∥BC;
(2)当
S△BCQ
S△ABC
=
1
3
,求
S△BPQ
S△ABC
的值;
(3)△APQ能否与△CQB相似?若能,求出AP的长;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•北京)在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.
(1)若α=60°且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数;

(2)在图2中,点P不与点B,M重合,线段CQ的延长线于射线BM交于点D,猜想∠CDB的大小(用含α的代数式表示),并加以证明;
(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=QD,请直接写出α的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从点A出发,沿AB以4cm/s的速度向点B运动,同时点Q从C点出发,沿CA以3cm/s的速度向点A运动,设运动时间为x秒.
(1)当x为何值时,BP=CQ;
(2)△APQ能否与△CQB相似?若能,求出x的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•宿迁)(1)如图1,在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=
1
2
∠ABC(0°<∠CBE<∠
1
2
ABC).以点B为旋转中心,将△BEC按逆时针旋转∠ABC,得到△BE′A(点C与点A重合,点E到点E′处)连接DE′,
求证:DE′=DE.
(2)如图2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC边上的两点,且满足∠DBE=
1
2
∠ABC(0°<∠CBE<45°).
求证:DE2=AD2+EC2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从点A出发,沿AB以每秒4cm,的速度向点B运动,同时点Q从C点出发,沿CA以3cm/s的速度向点A运动,设运动时间为x秒.
(1)当x为何值时,BP=CQ
(2)当x为何值时,PQ∥BC
(3)△APQ能否与△CQB相似?若能,求出x的值;若不能,请说明理由.

查看答案和解析>>

同步练习册答案