精英家教网 > 初中数学 > 题目详情
5.如图,在平面直角坐标中,点O是坐标原点,一次函数y1=-x+4与反比例函数y2=$\frac{k}{x}$(x>0)的图象交于A(1,m)、B(n,1)两点.
(1)求k、m、n的值.
(2)根据图象写出当y1>y2时,x的取值范围.
(3)若一次函数图象与x轴、y轴分别交于点N、M,则求出△AON的面积.

分析 (1)把A(1,m)、B(n,1)两点的坐标代入一次函数的解析式即可求出m、n的值,再把B的坐标代入反比例函数的解析式即可求出k的值;
(2)根据函数的图象和A、B的坐标即可得出答案;
(3)先根据一次函数的解析式求出N的坐标,再利用三角形面积公式即可求出△AON的面积.

解答 解:(1)把A(1,m)、B(n,1)两点的坐标代入y1=-x+4,
得m=-1+4=3,-n+4=1,n=3,
则A(1,3)、B(3,1).
把B(3,1)代入y2=$\frac{k}{x}$,
得k=3×1=3;

(2)∵A(1,3)、B(3,1),
∴由函数图象可知,y1>y2时,x的取值范围是1<x<3;

(3)∵一次函数y1=-x+4的图象与x轴交于点N,
∴N(4,0),ON=4,
∵A(1,3),
∴△AON的面积=$\frac{1}{2}$×4×3=6.

点评 本题考查了反比例函数与一次函数的交点问题,函数图象上点的坐标特征,三角形面积的计算;求出反比例函数的解析式是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

15.如图,△ABC中,E是BC上的一点,F是AC上一点,且3BE=BC,4CF=AF,AE、BF交于P点,如果△ABP的面积是30平方厘米,求△ABC的面积$\frac{120}{11}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.已知两点D(1,-3),E(-1,-4),试在直线y=x上确定一点P,使点P到D、E两点的距离之和最小,则最小值为$\sqrt{29}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在△ABC中,∠ACB=90°,AC=BC,AD为△ABC的角平分线,过点B作AD的垂线,分别交AD、AC的延长线于E、F两点,连接CE.
(1)求证:BE=EF;
(2)求证:AD=2BE;
(3)求∠AEC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知,如图,Rt△ABC中,∠ACB=90°,BC=8,cot∠BAC=$\frac{3}{4}$,点D在边BC上(不与点B、C重合),点E在边BC的延长线上,∠DAE=∠BAC,点F在线段AE上,∠ACF=∠B.设BD=x.

(1)若点F恰好是AE的中点,求线段BD的长;
(2)若y=$\frac{AF}{EF}$,求y关于x的函数关系式,并写出它的定义域;
(3)当△ADE是以AD为腰的等腰三角形时,求线段BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.在△ABC中,AB=AC,∠BAC=2∠DAE=2α.
(1)如图1,若点D关于直线AE的对称点为F,求证:△ABD≌△ACF;
(2)如图2,在(1)的条件下,若α=45°,求证:DE2=BD2+CE2
(3)如图3,若α=45°,点E在BC的延长线上,请直接写出DE2,BD2,CE2三者之间的等量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.若直角三角形的两个锐角之差为25°,则较小角的度数为32.5°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.(1)已知x+y=2,xy=7,求x2y+xy2的值;
(2)已知xm=3,xn=2,求x3m+2n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.选用适当的方法,解下列方程:
(1)(x-1)2=3                       
(2)2x2-5x+3=0.

查看答案和解析>>

同步练习册答案