【题目】如图,在Rt△ABC中,∠C90°,ACBC,AD是△ABC的角平分线,以D为圆心,DC为半径作⊙D,交AD于点E.
(1)判断直线AB与⊙D的位置关系并证明.
(2)若AC1,求的长.
【答案】(1)见解析;(2)
【解析】分析:(1)根据“作垂直,证相等”可证明AB与⊙D相切;
(2)分别求出所在圆的半径和圆心有的度数,代入弧长公式进行计算即可得解.
详解:(1)AB与⊙D相切.
证明:过点D作DF⊥AB,垂足为F.
∵AD是Rt△ABC的角平分线,∠C90°,
∴DFDC,
即dr,
∴AB与⊙D相切.
(2)∵∠C90°,ACBC1,∴∠BAC∠B45°,AB.
∵DF⊥AB,∴∠BDF∠B45°,∴BFDF.
∵AB、AC分别与⊙D相切,∴AFAC1.
设⊙D的半径为r.易得BF,BD,
∴,∴r.
∵AD是Rt△ABC的角平分线,∠BAC45°,
∴∠DAC ∠BAC22.5°.
又∵∠C90°,∴∠CDE67.5°.
∴.
科目:初中数学 来源: 题型:
【题目】已知函数y=为反比例函数.
(1)求k的值;
(2)它的图象在第 象限内,在各象限内,y随x增大而 ;(填变化情况)
(3)求出﹣2≤x≤﹣时,y的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕矩形ABCD(AB<BC)的对角线的交点O旋转(①→②→③),图中的M、N分别为直角三角形的直角边与矩形ABCD的边CD、BC的交点。
⑴该学习小组成员意外的发现图①(三角板一直角边与OD重合)中,BN2=CD2+CN2,在图③中(三角板一边与OC重合),CN2=BN2+CD2,请你对这名成员在图①和图③中发现的结论选择其一说明理由。
⑵试探究图②中BN、CN、CM、DN这四条线段之间的数量关系,写出你的结论,并说明理由。
⑶将矩形ABCD改为边长为1的正方形ABCD,直角三角板的直角顶点绕O点旋转到图④,两直角边与AB、BC分别交于M、N,直接写出BN、CN、CM、DM这四条线段之 间所满足的数量关系(不需要证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为5,点A的坐标为(﹣4,0),点B在y轴上,若反比例函数(k≠0)的图象过点C,则该反比例函数的表达式为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,A是双曲线在第一象限的分支上的一个动点,连接AO并延长与这个双曲线的另一分支交于点B,以AB为底边作等腰直角三角形ABC,使得点C位于第四象限。
(1)点C与原点O的最短距离是________;
(2)没点C的坐标为(,点A在运动的过程中,y随x的变化而变化,y关于x的函数关系式为________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,数轴上点、对应的数分别为、,且满足,点对应点的数为-3.
(1)______,______;
(2)若动点、分别从、同时出发向右运动,点的速度为3个单位长度/秒;点的速度为1个单位长度/秒,求经过多长时间、两点的距离为;
(3)在(2)的条件下,若点运动到点立刻原速返回,到达点后停止运动,点运动至点处又以原速返回,到达点后又折返向运动,当点停止运动点随之停止运动.求在整个运动过程中,两点,同时到达的点在数轴上表示的数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店购进一批小玩具,每个成本价为20元,经调查发现售价为32元时,每天可售出20个,若售价每增加5元,每天销售量减少2个;售价每减少5元,每天销售量增加2个,商店同一天内售价保持不变.
(1)若售价增加元,则销售量是(______________)个(用含的代数式表示);
(2)某日商店销售该玩具的利润为384元,求当天的售价是多少元?(利润=售价-进价)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校在“校园读书节”活动中,购买甲、乙两种图书共100本作为奖品,已知乙种图书的单价比甲种图书的单价高出50%.同样用360元购买乙种图书比购买甲种图书少4本.
(1)求甲、乙两种图书的单价各是多少元;
(2)如果购买图书的总费用不超过3500元,那么乙种图书最多能买多少本?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com