| A. | y=-$\frac{1}{2}x+\frac{2}{3}$ | B. | y=-x+$\frac{2}{3}$ | C. | y=-$\frac{1}{2}x+\frac{3}{2}$ | D. | y=-2x+$\frac{3}{2}$ |
分析 由点A(0,4)、B(3,0),可求得AB的长,然后由折叠的性质,求得OA′的长,且△A′OC∽△AOB,再由相似三角形的性质,求得OC的长,继而利用待定系数法求得直线BC的解析式.
解答 解:∵点A(0,4)、B(3,0),
∴OA=4,OB=3,
∴AB=$\sqrt{O{A}^{2}+O{B}^{2}}$=5,
由折叠的性质可得:A′B=AB=5,∠OA′C=∠OAB,
∴OA′=A′B-OB=2,
∵∠A′OC=∠AOB=90°,
∴△A′OC∽△AOB,
∴$\frac{OA′}{OA}=\frac{OC}{OB}$,
即$\frac{2}{4}=\frac{OC}{3}$,
解得:OC=$\frac{3}{2}$,
∴点C的坐标为:(0,$\frac{3}{2}$),
设直线BC的解析式为:y=kx+b,
则$\left\{\begin{array}{l}{b=\frac{3}{2}}\\{3k+b=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=-\frac{1}{2}}\\{b=\frac{3}{2}}\end{array}\right.$,
∴直线BC的解析式为:y=-$\frac{1}{2}$x+$\frac{3}{2}$.
故选C.
点评 此题考查了折叠的性质、勾股定理、相似三角形的判定与性质以及待定系数法求一次函数的解析式.注意求得点C的坐标是解此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com