【题目】使得函数值为0的自变量的值称为函数的零点.例如,对于函数y=x﹣1,令y=0可得x=1,我们说1是函数y=x﹣1的零点.已知函数y=x2﹣2mx﹣2(m+3)(m为常数)
(1)当m=0时,求该函数的零点.
(2)证明:无论m取何值,该函数总有两个零点.
【答案】(1)m=0时,该函数的零点为±(2)证明见解析
【解析】试题分析:(1)、求出当y=0时的方程的解,从而得出函数的零点;(2)、利用根的判别式得出判别式为非负数,即当y=0时方程有两个不相等的实数根,即函数总有两个零点.
试题解析:(1)、解:当m=0时,令y=0,则x2﹣6=0, 解得x=±,
所以,m=0时,该函数的零点为±;
(2)、证明:令y=0,则x2﹣2mx﹣2(m+3)=0,
△=b2﹣4ac=(﹣2m)2﹣4×1×2(m+3)=4m2+8m+24=4(m+1)2+20,
∵无论m为何值时,4(m+1)2≥0, ∴△=4(m+1)2+20>0,
∴关于x的方程总有不相等的两个实数根,
即,无论m取何值,该函数总有两个零点.
科目:初中数学 来源: 题型:
【题目】如图1,四边形ABCD中,BD⊥AD,E为BD上一点,AE=BC,CE⊥BD,CE=ED
(1)已知AB=10,AD=6,求CD;
(2)如图2,F为AD上一点,AF=DE,连接BF,交BF交AE于G,过G作GH⊥AB于H,∠BGH=75°.求证:BF=2GH+EG.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)阅读下面的材料并把解答过程补充完整.
问题:在关于,的二元一次方程组中,,,求的取值范围.
在关于,的二元一次方程组中,利用参数的代数式表示,,然后根据,列出关于参数的不等式组即可求得的取值范围.解:由,解得,又因为,,所以解得____________.
(2)请你按照上述方法,完成下列问题:
①已知,且,,求的取值范围;
②已知,在关于,的二元一次方程组中,,,请直接写出的取值范围(结果用含的式子表示)____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)观察下列各式: ……
你发现了什么规律?试用你发现的规律填空:
;
(2)请你用含一个字母的等式将上面各式呈现的规律表示出来,并用所学数学知识说明你所写式子的正确性.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.
(1)求证:AF=DC;
(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
A.2B.2.5或3.5
C.3.5或4.5D.2或3.5或4.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校课外兴趣小组在本校学生中开展“感动中国2013年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类.其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如下表:
类别 | A | B | C | D |
频数 | 30 | 40 | 24 | b |
频率 | a | 0.4 | 0.24 | 0.06 |
(1)表中的a= ,b= ;
(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;
(3)若该校有学生1000名,根据调查结果估计该校学生中类别为C的人数约为多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com