精英家教网 > 初中数学 > 题目详情
14.2015年4月14日,爱心活动在山东省举行.来自我省的100位“穷娃”现场接受社会捐助.现场捐款达401万元,401万元这个数用科学记数法可表示为4.01×106

分析 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.

解答 解:将401万用科学记数法表示为:4.01×106
故答案为:4.01×106

点评 此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.
(1)试说明CD垂直于AB;
(2)求证:DE平分∠BDC;
(3)若点M在DE上,且DC=DM,求证:ME=BD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.计算:(3m-2n+4)(3m+2n-4)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.2016年8月31日,东明一中新校区启用,学校迎来高一新生,为了保证新生顺利入学.学校在校园内设立了团员“迎接接待站”,并向家长和学生提供“学校建筑分布图,协助新生完成报到流程,尽全力提供周到的服务,如图为分布图的一部分,方格纸中每个小方格都是边长为1个单位的正方形,若教学楼的坐标为A(1,2),图书馆的位置坐标为B(-2,-1),解答以下问题:
(1)在图中找到坐标系中的原点,并建立直角坐标系;
(2)若体育馆的坐标为C(1,-3),食堂坐标为D(2,0),请在图中标出体育馆和食堂的位置;
(3)顺次连接教学楼、图书馆、体育馆、食堂得到四边形ABCD,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,直线l:y=-$\sqrt{3}$x+$\sqrt{3}$与x轴、y轴分别相交于点A、B,△AOB与△ACB关于直线l对称,则∠OBC=60°.点C的坐标为($\frac{3}{2}$,$\frac{\sqrt{3}}{2}$).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.在平面直角坐标系中,点P(m+3,m-1)在x轴上,则点P的坐标为(4,0).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.(1)如图①,把△ABC纸片沿DE折叠,当点A落在四边形BCED内部点A′的位置时,∠A、∠1、∠2之间有怎样的数量关系?并说明理由.
(2)如图②,把△ABC纸片沿DE折叠,当点A落在四边形BCED外部点A′的位置时,∠A、∠1、∠2之间有怎样的数量关系?并说明理由.
(3)如图③,把四边形ABCD沿EF折叠,当点A、D分别落在四边形BCFE内部点A′、D′的位置时,你能求出∠A′、∠D′、∠1 与∠2之间的数量关系吗?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.从一幅扑克牌(去掉大、小王)中任意抽取4张,根据牌面上的数字进行混合运算(每张牌只能用一次),使得运算结果为24或-24,其中红色扑克代表负数,黑色扑克代表正数,J、Q、K分别代表11,12,13.如果抽到的是下列四张扑克(一张黑Q,一张红Q,一张黑3,一张红A)凑成24所列的算式是12×3-(-12)×(-1)
提示:【可运用加、减、乘、除、乘方(例如数2,6,可列62=36或26=64)运算,可用括号:注意:例如4×(1+2+3)=24与(2+1+3)×4=24只是顺序不同,属同一个算式】

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.阅读材料:黑白双雄,纵横江湖,双剑合璧,天下无敌,这是武侠小说中的常见描述,其意指两个人合在一起,取长补短,威力无比.在二次根式中也有这样相辅相成的例子.
如(2+$\sqrt{3}$)(2-$\sqrt{3}$)=22-(-$\sqrt{3}$)2=1,($\sqrt{5}$+$\sqrt{2}$)($\sqrt{5}$-$\sqrt{2}$)=($\sqrt{5}$)2-($\sqrt{2}$)2=3,它们的积是有理数,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理数因素.于是,我们可以将下面的式子化简:
$\frac{1}{2-\sqrt{3}}$=$\frac{2+\sqrt{3}}{(2-\sqrt{3})(2+\sqrt{3})}$=2+$\sqrt{3}$
解决问题:
(1)4+$\sqrt{7}$的一个有理化因式是4-$\sqrt{7}$.
(2)计算:$\frac{1}{\sqrt{3}+1}$+$\frac{1}{\sqrt{5}+\sqrt{3}}$+$\frac{1}{\sqrt{7}+\sqrt{5}}$+…+$\frac{1}{\sqrt{2017}+\sqrt{2015}}$.

查看答案和解析>>

同步练习册答案