精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC的顶点坐标分别为A(1,3)、B(4,2)、C(2,1).

(1)作出与ABC关于x轴对称的A1B1C1,并写出A1、B1、C1的坐标;

(2)以原点O为位似中心,在原点的另一侧画出A2B2C2,使

【答案】(1)A1(1,-3),B1(4,-2),C1(2,-1)

(2)

【解析】解:(1)ABC关于x轴对称的A1B1C1,如图所示:

A1(1,-3),B1(4,-2),C1(2,-1)。

(2)根据A(1,3)、B(4,2)、C(2,1),

以原点O为位似中心,在原点的另一侧画出A2B2C2,使

则A22,6),B28,4),C24,2)

在坐标系中找出各点并连接,如图所示

(1)根据坐标系找出点A、B、C关于x轴对应点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1、B1、C1的坐标即可。

(2)利用在原点的另一侧画出A2B2C2,使,原三角形的各顶点坐标都乘以-2得出对应点的坐标即可得出图形。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°,点OAC边延长线上的一点,以点O为圆心的圆与射线AC交于点D和点H,过点DDFAB,DF交⊙O于点F,交BC边于点B,且BF=BE.

(1)判断直线BF与⊙O的位置关系,并说明理由;

(2)若∠A=30°,BC=8,EF=6,请求出⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在RtABC中,∠ABC=90°,BD⊥AC于点D,且AB=5,AD=4,在AD上取一点G,使AG=,点P是折线CB﹣BA上一动点,以PG为直径作O交AC于点E,连结PE.

(1)求sinC的值;

(2)当点P与点B重合时如图所示,⊙O交边AB于点F,求证:∠EPG=∠FPG;

(3)点P在整个运动过程中:

当BC或AB与O相切时,求所有满足条件的DE长;

点P以圆心O为旋转中心,顺时针方向旋转90°得到P′,当P′恰好落在AB边上时,求OPP′与OGE的面积之比(请直接写出答案).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠BCD100°,∠B60o,连接ACBCACAB,且△ABC≌△ADCCECF分别是∠ACB与∠ACD的平分线,分别交ABADEF两点.

(1)分别求∠BAD和∠AEC的度数.

(2)请写出图中所有相等的线段.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,要测量河流的长,因为无法测河流附近的点,可以在线外任取一点,在的延长线上任取一点,连结,并且延长到点,使;延长到点,使连结,并延长到点,使点,,在同一直线上.证明:测量出线段的长就是河流的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB⊥BDCD⊥BD

1)若AB=9CD=4BD=10,请问在BD上是否存在P点,使以PAB三点为顶点的三角形与以PCD三点为顶点的三角形相似?若存在,求BP的长;若不存在,请说明理由;

2)若AB=9CD=4BD=12,请问在BD上存在多少个P点,使以PAB三点为顶点的三角形与以PCD三点为顶点的三角形相似?并求BP的长;

3)若AB=9CD=4BD=15,请问在BD上存在多少个P点,使以PAB三点为顶点的三角形与以PCD三点为顶点的三角形相似?并求BP的长;

4)若AB=mCD=nBD=l,请问mnl满足什么关系时,存在以PAB三点为顶点的三角形与以PCD三点为顶点的三角形相似的一个P点?两个P点?三个P点?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=AC=5,BC=6,ADBC,E、F分别为AC、AD上两动点,连接CF、EF,则CF+EF的最小值为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】12分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点GOC到点E,使OG=2ODOE=2OC,然后以OGOE为邻边作正方形OEFG,连接AGDE

1)求证:DE⊥AG

2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(α360°)得到正方形OE′F′G′,如图2

在旋转过程中,当∠OAG′是直角时,求α的度数;

若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠B90°AB3BC4,将△ABC折叠,使点B恰好落在斜边AC上,与点B重合,AD为折痕,则DB_____

查看答案和解析>>

同步练习册答案