【题目】如图,△ABC的顶点坐标分别为A(1,3)、B(4,2)、C(2,1).
(1)作出与△ABC关于x轴对称的△A1B1C1,并写出A1、B1、C1的坐标;
(2)以原点O为位似中心,在原点的另一侧画出△A2B2C2,使.
【答案】(1),A1(1,-3),B1(4,-2),C1(2,-1)
(2)
【解析】解:(1)△ABC关于x轴对称的△A1B1C1,如图所示:
A1(1,-3),B1(4,-2),C1(2,-1)。
(2)根据A(1,3)、B(4,2)、C(2,1),
以原点O为位似中心,在原点的另一侧画出△A2B2C2,使,
则A2(-2,-6),B2(-8,-4),C2(-4,-2)。
在坐标系中找出各点并连接,如图所示:
(1)根据坐标系找出点A、B、C关于x轴对应点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1、B1、C1的坐标即可。
(2)利用在原点的另一侧画出△A2B2C2,使,原三角形的各顶点坐标都乘以-2得出对应点的坐标即可得出图形。
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,点O是AC边延长线上的一点,以点O为圆心的圆与射线AC交于点D和点H,过点D作DF∥AB,DF交⊙O于点F,交BC边于点B,且BF=BE.
(1)判断直线BF与⊙O的位置关系,并说明理由;
(2)若∠A=30°,BC=8,EF=6,请求出⊙O的直径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图①,在Rt△ABC中,∠ABC=90°,BD⊥AC于点D,且AB=5,AD=4,在AD上取一点G,使AG=,点P是折线CB﹣BA上一动点,以PG为直径作⊙O交AC于点E,连结PE.
(1)求sinC的值;
(2)当点P与点B重合时如图②所示,⊙O交边AB于点F,求证:∠EPG=∠FPG;
(3)点P在整个运动过程中:
①当BC或AB与⊙O相切时,求所有满足条件的DE长;
②点P以圆心O为旋转中心,顺时针方向旋转90°得到P′,当P′恰好落在AB边上时,求△OPP′与△OGE的面积之比(请直接写出答案).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠BCD=100°,∠B=60o,连接AC,BC>AC>AB,且△ABC≌△ADC,CE、CF分别是∠ACB与∠ACD的平分线,分别交AB、AD于E、F两点.
(1)分别求∠BAD和∠AEC的度数.
(2)请写出图中所有相等的线段.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,要测量河流的长,因为无法测河流附近的点,可以在线外任取一点,在的延长线上任取一点,连结和,并且延长到点,使;延长到点,使连结,并延长到点,使点,,在同一直线上.证明:测量出线段的长就是河流的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB⊥BD,CD⊥BD
(1)若AB=9,CD=4,BD=10,请问在BD上是否存在P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?若存在,求BP的长;若不存在,请说明理由;
(2)若AB=9,CD=4,BD=12,请问在BD上存在多少个P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?并求BP的长;
(3)若AB=9,CD=4,BD=15,请问在BD上存在多少个P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?并求BP的长;
(4)若AB=m,CD=n,BD=l,请问m,n,l满足什么关系时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的一个P点?两个P点?三个P点?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.
(1)求证:DE⊥AG;
(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.
①在旋转过程中,当∠OAG′是直角时,求α的度数;
②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在斜边AC上,与点B′重合,AD为折痕,则DB=_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com