精英家教网 > 初中数学 > 题目详情

【题目】下列条件中,不能判断是直角三角形的是(

A.B.C.D.

【答案】D

【解析】

根据勾股定理的逆定理、三角形的内角和为180度进行判定即可.

解:Aabc=345,所以设a=3xb=4xc=5x,而(3x2+4x2=5x2,故为直角三角形;

B,所以设a=xb=2xc=x,而 符合勾股定理的逆定理,故为直角三角形;

C、因为∠A+B=C,∠A+B+C=180°,则∠C=90°,故为直角三角形;

D、因为,所以设∠A=3x,则∠B=4x,∠C=5x,故3x+4x+5x=180°,解得x=15°3x=15×3=45°4x=15×4=60°5x=15×5=75°,故此三角形是锐角三角形.

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:把RtABCRtDEF按如图1摆放(点C与点E重合),点BCE)、F在同一条直线上,∠ACB=∠EDF90°,∠DEF45°AC8cmBC6cmEF9cm,如图2,△DEF从图1的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动.DEAC相交于点Q,连接PQ,设移动时间为ts)(0t4.5).解答下列问题:

1)用含t的代数式表示线段AP   

2)当t为何值时,点E在∠A的平分线上?

3)当t为何值时,点A在线段PQ的垂直平分线上?

4)连接PE,当t1s)时,求四边形APEC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角坐标系中的网格由单位正方形构成,△ABC中,A点坐标为(23),B点坐标为(-20),C点坐标为(0-1).

1AC的长为______

2)求证:AC⊥BC

3)若以ABC及点D为顶点的四边形为平行四边形ABCD,画出平行四边形ABCD,并写出D点的坐标______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于平面直角坐标系中的点,若点的坐标为 (其中为常数,且),则称点为点的“之雅礼点”.例如:的“之雅礼点”为,即

1)①点 之雅礼点” 的坐标为___________

②若点的“之雅礼点” 的坐标为,请写出一个符合条件的点的坐标_________

2)若点轴的正半轴上,点的“之雅礼点”为点,且为等腰直角三角形,则的值为____________

3)在(2)的条件下,若关于的分式方程无解,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AC=1,BC=,点ORt△ABC内一点,连接A0、BO、CO,且∠AOC=∠COB=BOA=120°,按下列要求画图(保留画图痕迹):以点B为旋转中心,将△AOB绕点B顺时针方向旋转60°,得到△A′O′B(得到A、O的对应点分别为点A′、O′),则∠A′BC=______,OA+OB+OC=______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+cx轴于A、B两点(AB的左侧),且OA=3,OB=1,与y轴交于C(0,3),抛物线的顶点坐标为D(﹣1,4).

(1)求A、B两点的坐标;

(2)求抛物线的解析式;

(3)过点D作直线DEy轴,交x轴于点E,点P是抛物线上B、D两点间的一个动点(点P不与B、D两点重合),PA、PB与直线DE分别交于点F、G,当点P运动时,EF+EG是否为定值?若是,试求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某人在D处测得山顶C的仰角为37°,向前走100米来到山脚A处,测得山坡AC的坡度为i=1:0.5,求山的高度(不计测角仪的高度,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在课外学习时遇到这样一个问题:

定义:如果二次函数满足,则称这两个函数互为旋转函数

求函数旋转函数

小明是这样思考的:由函数可知,,根据,求出,就能确定这个函数的旋转函数

请参考小明的方法解决下面问题:

(1)直接写出函数旋转函数

(2)若函数互为旋转函数,求的值;

(3)已知函数的图象与轴交于点A、B两点(A在B的左边),与轴交于点C,点A、B、C关于原点的对称点分别是A1,B1,C1,试证明经过点A1,B1,C1的二次函数与函数互为旋转函数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,每个小正方形的边长都为1,四边形ABCD的顶点都在小正方形的顶点上.

1)求四边形ABCD的面积;

2)∠BCD是直角吗?说明理由.

查看答案和解析>>

同步练习册答案