精英家教网 > 初中数学 > 题目详情
如图,已知AB是⊙O的直径,PA是⊙O的切线,过点B作BCOP交⊙O于点C,连接AC.
(1)求证:△ABC△POA;
(2)若AB=2,PA=
2
,求BC的长.(结果保留根号)
(1)证明:∵AB是⊙O的直径,
∴∠ACB=90°.
∵PA是⊙O的切线,
∴∠OAP=90°.
∵BCOP,
∴∠AOP=∠CBA.
则△ABC△POA.

(2)∵AB是⊙O的直径,且AB=2,
∴OA=1.
∵在Rt△OAP中,PA=
2

OP=
PA2+OA2
=
3

∵由(1)可知△ABC△POA,
BC
OA
=
AB
OP

则BC=
AB•OA
OP
=
2×1
3

∴求得BC=
2
3
3
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图,⊙A与y轴交于C、D两点,圆心A的坐标为(1,0),⊙A的半径为
5
过C作⊙A的切线交x轴于点B.
(1)求切线BC的解析式;
(2)若点P是第一象限内⊙A上的一点,过点P作⊙A的切线与直线BC相交于点G,且∠CGP=120°,求点G的坐标;
(3)向左移动⊙A(圆心A始终保持在x轴上),与直线BC交于E、F,在移动过程中是否存在点A,使△AEF是直角三角形?若存在,求出点A的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,∠ABC=30°,AB=10,那么以A为圆心,6为半径的⊙A与直线BC的位置关系是(  )
A.相交B.相切C.相离D.不能确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,Rt△ABC中,∠C=90°,AC=3,BC=4,以C为圆心,以
12
5
为半径作⊙C,则⊙C与直线AB的位置关系是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,P点在AB的延长线上,弦CD⊥AB于E,∠PCE=2∠BDC.
(1)求证:PC是⊙O的切线;
(2)若AE:EB=2:1,PB=6,求弦CD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

以半圆中的一条弦BC(非直径)为对称轴将弧BC折叠后与直径AB交于点D,若
AD
DB
=
2
3
,且AB=10,则CB的长为(  )
A.4
5
B.4
3
C.4
2
D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

同学们都学习过《几何》课本第三册第199页的第11题,它是这样的:
如图,A为⊙O的直径EF上的一点,OB是和这条直径垂直的半径,BA和⊙O相交于另一点C,过点C的切线和EF的延长线相交于点D,求证:DA=DC.

(1)现将图1中的直径EF所在直线进行平行移动到图2所示的位置,此时OB与EF垂直相交于H,其它条件不变.
①求证:DA=DC;
②当DF:EF=1:8,且DF=
2
时,求AB•AC的值.
(2)将图2中的EF所在直线继续向上平行移动到图3所示的位置,使EF与OB的延长线垂直相交于H,A为EF上异于H的一点,且AH小于⊙O的切线交EF于D,试猜想:DA=DC是否仍然成立?证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AC为直径的圆交AB于D,则AD的长为(  )
A.
9
5
B.
12
5
C.
16
5
D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知△ABC是等腰三角形,∠C=90°,AC=BC=
2
,在BC上取一点O,以O为圆心,OC为半径作半圆与AB相切于点E,则⊙O的半径为______.

查看答案和解析>>

同步练习册答案