精英家教网 > 初中数学 > 题目详情
如图,Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AC为直径的圆交AB于D,则AD的长为(  )
A.
9
5
B.
12
5
C.
16
5
D.4

连接CD,
∵Rt△ABC中,∠ACB=90°,AC=4,BC=3,
∴根据勾股定理得:AB=
AC2+BC2
=5,
∵AC为直径,
∴CD⊥AB,
∴CD=
AC•BC
AB
=
12
5

∴AD=
AC2-CD2
=
16
5

故选C.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,已知PAC为⊙O的割线,连接PO交⊙O于B,PB=2,OP=7,PA=AC,则PA的长为(  )
A.
7
B.2
3
C.
14
D.3
2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知AB是⊙O的直径,PA是⊙O的切线,过点B作BCOP交⊙O于点C,连接AC.
(1)求证:△ABC△POA;
(2)若AB=2,PA=
2
,求BC的长.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,平行四边形ABCD中,以A为圆心,AB为半径的圆交AD于F,交BC于G,延长BA交圆于E.
(1)若ED与⊙A相切,试判断GD与⊙A的位置关系,并证明你的结论;
(2)在(1)的条件不变的情况下,若GC=CD,求∠C.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,Rt△ABC中,∠ACB=90°,AB=5,BC=3,以点C为圆心的圆与AB相切.
(1)求⊙C的半径;
(2)O是AB的中点,请判断点O与⊙C的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知AB是⊙O的直径,MN是⊙O的切线,C是切点,连接AC,若∠CAB=50°,则∠ACN的度数为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,∠C=90°,AC=8,AB=10,点P在AC上,AP=2,若⊙O的圆心在线段BP上,且⊙O与AB、AC都相切,则⊙O的半径是(  )
A.1B.
5
4
C.
12
7
D.
9
4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系xoy中,O是坐标原点,点A在x正半轴上,OA=12
3
cm,点B在y轴的正半轴上,OB=12cm,动点P从点O开始沿OA以2
3
cm/s的速度向点A移动,动点Q从点A开始沿AB以4cm/s的速度向点B移动,动点R从点B开始沿BO以2cm/s的速度向点O移动.如果P、Q、R分别从O、A、B同时移动,移动时间为t(0<t<6)s.
(1)求∠OAB的度数.
(2)以OB为直径的⊙O′与AB交于点M,当t为何值时,PM与⊙O′相切?
(3)写出△PQR的面积S随动点移动时间t的函数关系式,并求s的最小值及相应的t值.
(4)是否存在△APQ为等腰三角形?若存在,求出相应的t值;若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知AB是⊙O的直径,点E在⊙O上,过点E的直线EF与AB的延长线交于点F,AC⊥EF,垂足为C,AE平分∠FAC.
(1)求证:CF是⊙O的切线;
(2)∠F=30°时,求
S△OFE
S四边形AOEC
的值.

查看答案和解析>>

同步练习册答案