精英家教网 > 初中数学 > 题目详情
如图,Rt△ABC中,∠ACB=90°,AB=5,BC=3,以点C为圆心的圆与AB相切.
(1)求⊙C的半径;
(2)O是AB的中点,请判断点O与⊙C的位置关系,并说明理由.
(1)过C点作CD⊥AB,垂足为D,
在Rt△ABC中,AC=
AB2-BC2
=
52-32
=4

S△ABC=
1
2
•AC•BC=
1
2
•AB•CD

1
2
×4×3=
1
2
×5•CD

∴CD=
12
5

由题意,AB与⊙C相切,且CD⊥AB,
∴CD是⊙C的半径,
即r=CD=
12
5


(2)答:点O在⊙C外,理由如下:
连接OC,
在Rt△ABC中,O是斜边AB的中点,
∴OC=
1
2
AB=
5
2
12
5

∴点O在⊙C外.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图,⊙A与y轴交于C、D两点,圆心A的坐标为(1,0),⊙A的半径为
5
过C作⊙A的切线交x轴于点B.
(1)求切线BC的解析式;
(2)若点P是第一象限内⊙A上的一点,过点P作⊙A的切线与直线BC相交于点G,且∠CGP=120°,求点G的坐标;
(3)向左移动⊙A(圆心A始终保持在x轴上),与直线BC交于E、F,在移动过程中是否存在点A,使△AEF是直角三角形?若存在,求出点A的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知:如图,以定线段AB为直径作半圆O,P为半圆上任意一点(异于A、B),过点P作半圆O的切线分别交过A、B两点的切线于D、C,连接OC、BP,过点O作OMCD分别交BC与BP于点M、N.下列结论:
①S四边形ABCD=
1
2
AB•CD;
②AD=AB;
③AD=ON;
④AB为过O、C、D三点的圆的切线.
其中正确的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

同学们都学习过《几何》课本第三册第199页的第11题,它是这样的:
如图,A为⊙O的直径EF上的一点,OB是和这条直径垂直的半径,BA和⊙O相交于另一点C,过点C的切线和EF的延长线相交于点D,求证:DA=DC.

(1)现将图1中的直径EF所在直线进行平行移动到图2所示的位置,此时OB与EF垂直相交于H,其它条件不变.
①求证:DA=DC;
②当DF:EF=1:8,且DF=
2
时,求AB•AC的值.
(2)将图2中的EF所在直线继续向上平行移动到图3所示的位置,使EF与OB的延长线垂直相交于H,A为EF上异于H的一点,且AH小于⊙O的切线交EF于D,试猜想:DA=DC是否仍然成立?证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,平行四边形ABCD的对角线AC,BD交于点P,E为BC的中点,过E点的圆O与BD相切于点P,圆O与直线AC,BC分别交于点F,G.
(1)求证:△PCD△EPF;
(2)如果AB=AD,AC=6,BD=8(如图2).求圆O的直径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AC为直径的圆交AB于D,则AD的长为(  )
A.
9
5
B.
12
5
C.
16
5
D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB切⊙O于点B,OA=2
3
,AB=3,弦BCOA,则劣弧BC的弧长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,⊙O中,AB、AC是弦,CD是直径,PC是⊙O的切线,切点为C,割线PD交⊙O于点E,DE=
4
3
,PE=
14
3
,BD=2,∠ACD=15°.求AB的长(不取近似值)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,两同心圆O,大圆的弦AB切小圆于点C,且AB=4,求圆环的面积.

查看答案和解析>>

同步练习册答案