精英家教网 > 初中数学 > 题目详情
同学们都学习过《几何》课本第三册第199页的第11题,它是这样的:
如图,A为⊙O的直径EF上的一点,OB是和这条直径垂直的半径,BA和⊙O相交于另一点C,过点C的切线和EF的延长线相交于点D,求证:DA=DC.

(1)现将图1中的直径EF所在直线进行平行移动到图2所示的位置,此时OB与EF垂直相交于H,其它条件不变.
①求证:DA=DC;
②当DF:EF=1:8,且DF=
2
时,求AB•AC的值.
(2)将图2中的EF所在直线继续向上平行移动到图3所示的位置,使EF与OB的延长线垂直相交于H,A为EF上异于H的一点,且AH小于⊙O的切线交EF于D,试猜想:DA=DC是否仍然成立?证明你的结论.
(1)①证明:连OC,则OC⊥DC,
∴∠DCA=90°-∠ACO=90°-∠B,
又∠DAC=∠BAE=90°-∠B,
∴∠DAC=∠DCA∴DA=DC,
②∵DF:EF=1:8,DF=
2

∴EF=8DF=8
2

又DC为切线,
∴DC2=DF•DE=
2
×9
2
=18,
∴DC=3
2

∴AD=DC=3
2

∴AF=AD-DF=2
2

∴AE=EF-AF=6
2

∴AB•AC=AE•AF=24;

(2)结论DA=DC仍然成立,理由如下:
延长BO交⊙O于K,连CK,则∠KCB=90°,
又DC为⊙O的切线,
∴∠DCA=∠CKB=90°-∠CBK,
又∠BAH=90°-∠HBA,
而∠CBK=∠HBA,
∴∠DCA=∠BAH,
∴DA=DC.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,PA切OO于点A,PO交⊙O于C,延长PO交⊙O于点B,PA=AB,PD平分∠APB交AB于点D,则∠ADP=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB为圆O的直径,C为圆O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB,延长AB交DC于点E.
(1)判定直线DE与圆O的位置关系,并说明你的理由;
(2)求证:AC2=AD•AB;
(3)以下两个问题任选一题作答.(若两个问题都答,则以第一问的解答评分)
①若CF⊥AB于点F,试讨论线段CF、CE和DE三者的数量关系;
②若EC=5
3
,EB=5,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知AB是⊙O的直径,PA是⊙O的切线,过点B作BCOP交⊙O于点C,连接AC.
(1)求证:△ABC△POA;
(2)若AB=2,PA=
2
,求BC的长.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙O为△BCD的外接圆,过C点作⊙O的切线交BD的延长线于A,∠ACB=75°,∠ABC=45°,则
CD
DB
的值为(  )
A.
3
2
B.2C.
2
D.
2
2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,平行四边形ABCD中,以A为圆心,AB为半径的圆交AD于F,交BC于G,延长BA交圆于E.
(1)若ED与⊙A相切,试判断GD与⊙A的位置关系,并证明你的结论;
(2)在(1)的条件不变的情况下,若GC=CD,求∠C.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,Rt△ABC中,∠ACB=90°,AB=5,BC=3,以点C为圆心的圆与AB相切.
(1)求⊙C的半径;
(2)O是AB的中点,请判断点O与⊙C的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,∠C=90°,AC=8,AB=10,点P在AC上,AP=2,若⊙O的圆心在线段BP上,且⊙O与AB、AC都相切,则⊙O的半径是(  )
A.1B.
5
4
C.
12
7
D.
9
4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,已知A点的坐标为(0,3),⊙A的半径为1,点B在x轴上.
①若点B的坐标为(4,0),⊙B的半径为3,试判断⊙A与⊙B的位置关系;
②能否在x轴的正半轴上确定一点B,使⊙B与y轴相切,并且与⊙A相切?请说明理由.

查看答案和解析>>

同步练习册答案