精英家教网 > 初中数学 > 题目详情
如图,AB为圆O的直径,C为圆O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB,延长AB交DC于点E.
(1)判定直线DE与圆O的位置关系,并说明你的理由;
(2)求证:AC2=AD•AB;
(3)以下两个问题任选一题作答.(若两个问题都答,则以第一问的解答评分)
①若CF⊥AB于点F,试讨论线段CF、CE和DE三者的数量关系;
②若EC=5
3
,EB=5,求图中阴影部分的面积.
(1)DE是⊙O的切线.(1分)
连接OC,(2分)
∵OA、OC是⊙O的半径,
∴∠OAC=∠OCA.
∵AC是∠DAB的平分线,
∴∠OAC=∠CAD.
∴∠OCA=∠CAD.
∴OCAD.
∵AD⊥DE,
∴OC⊥DE.
故DE是⊙O的切线.(4分)

(2)证明:∵AB为⊙O的直径,
∴∠ACB=90°.(5分)
∵AD⊥DE,∠ADC=90°,
∴∠ACB=∠ADC.
∵∠DAC=∠CAB,
∴△DAC△CAB.
∴AC2=AD•AB.(7分)

(3)①CF+CE=DE.(8分)
∵AC是∠DAB的平分线,且CD⊥AD、CF⊥AF,
∴CF=CD.
∵DC+CE=DE,
∴CF+CE=DE.(10分)
②∵DE是⊙O的切线,
∴∠BCE=∠CAB.
∵∠CEB=∠CEB,
∴△BCE△CAE.
BC
CA
=
CE
AE
=
BE
CE
.(8分)
∴AE=15,AB=10,
BC
CA
=
1
3
,即CA=
3
BC.
则在Rt△ABC中,由CA2+BC2=AB2解得:
BC=5,CA=5
3

∴S△ABC=
25
2
3

∴阴影部分的面积=半圆的面积-S△ABC=
25(π-
3
)
2
.(10分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图,⊙A与y轴交于C、D两点,圆心A的坐标为(1,0),⊙A的半径为
5
过C作⊙A的切线交x轴于点B.
(1)求切线BC的解析式;
(2)若点P是第一象限内⊙A上的一点,过点P作⊙A的切线与直线BC相交于点G,且∠CGP=120°,求点G的坐标;
(3)向左移动⊙A(圆心A始终保持在x轴上),与直线BC交于E、F,在移动过程中是否存在点A,使△AEF是直角三角形?若存在,求出点A的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,Rt△ABC,∠ACB=90°,点E是边BC上一点,过点E作FE⊥BC(垂足为E)交AB于点F,且EF=AF,以点E为圆心,EC长为半径作⊙E交BC于点D.
(1)求证:斜边AB是⊙E的切线;
(2)设若AB与⊙E相切的切点为G,AC=8,EF=5,连DA、DG,求S△ADG

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知:如图,以定线段AB为直径作半圆O,P为半圆上任意一点(异于A、B),过点P作半圆O的切线分别交过A、B两点的切线于D、C,连接OC、BP,过点O作OMCD分别交BC与BP于点M、N.下列结论:
①S四边形ABCD=
1
2
AB•CD;
②AD=AB;
③AD=ON;
④AB为过O、C、D三点的圆的切线.
其中正确的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,Rt△ABC中,∠C=90°,AC=3,BC=4,以C为圆心,以
12
5
为半径作⊙C,则⊙C与直线AB的位置关系是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知PAB、PCD为⊙O的两条割线,PA=8,AB=10,CD=7,∠P=60°,则⊙O的半径为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,P点在AB的延长线上,弦CD⊥AB于E,∠PCE=2∠BDC.
(1)求证:PC是⊙O的切线;
(2)若AE:EB=2:1,PB=6,求弦CD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

同学们都学习过《几何》课本第三册第199页的第11题,它是这样的:
如图,A为⊙O的直径EF上的一点,OB是和这条直径垂直的半径,BA和⊙O相交于另一点C,过点C的切线和EF的延长线相交于点D,求证:DA=DC.

(1)现将图1中的直径EF所在直线进行平行移动到图2所示的位置,此时OB与EF垂直相交于H,其它条件不变.
①求证:DA=DC;
②当DF:EF=1:8,且DF=
2
时,求AB•AC的值.
(2)将图2中的EF所在直线继续向上平行移动到图3所示的位置,使EF与OB的延长线垂直相交于H,A为EF上异于H的一点,且AH小于⊙O的切线交EF于D,试猜想:DA=DC是否仍然成立?证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,⊙O中,AB、AC是弦,CD是直径,PC是⊙O的切线,切点为C,割线PD交⊙O于点E,DE=
4
3
,PE=
14
3
,BD=2,∠ACD=15°.求AB的长(不取近似值)

查看答案和解析>>

同步练习册答案