精英家教网 > 初中数学 > 题目详情
已知二次函数y=ax2+bx+c(a≠0)中自变量x和函数值y的部分对应值如下表:
x-3-2-101
y-60406
(1)求二次函数解析式,并写出顶点坐标;
(2)在直角坐标系中画出该抛物线的图象
(3)若该抛物线上两点A(x1,y1)、B(x2,y2)的横坐标满足x1<x2<-1,试比较y1与y2的大小.
(1)
x-3-2-101
y-6040-6
由图表可知抛物线y=ax2+bx+c过点(-2,0),(0,0),求出对称轴即可:
x=-1;
∴顶点坐标为:(-1,4),
∴设y=a(x+1)2+4,
将(0,0)代入可得:a+4=0,
解得:a=-4,
∴二次函数的解析式为:y=-4(x+1)2+4=-4x2-8x.

(2)由表格中的值可以判断:
图象与x轴交点坐标为:(-2,0),(0,0),顶点坐标为:(-1,4),


(3)∵该抛物线上两点A(x1,y1)、B(x2,y2)的横坐标满足x1<x2<-1,
∵x<-1时,y随x的增大而增大,
∵x1<x2<-1,
∴y1<y2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:抛物线y=ax2+bx+4的对称轴为x=-1,且与x轴相交于点A、B,与y轴相交于点C,其中点A的坐标为(-3,0),
(1)求该抛物线的解析式;
(2)若该抛物线的顶点为D,求△ACD的面积;
(3)在抛物线的对称轴上是否存在点P,使得以A、B、C、P为顶点的四边形是梯形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

仔细阅读并完成下题:
我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”;如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,已知“蛋圆”是由抛物线y=ax2-2ax+c的一部分和圆心为M的半圆合成的.点A、B、C分别是“蛋圆”与坐标轴的交点,已知点A的坐标为(-1,0),AB为半圆的直径,
(1)点B的坐标为(______,______);点C的坐标为(______,______),半圆M的半径为______;
(2)若P是“蛋圆”上的一点,且以O、P、B为顶点的三角形是等腰直角三角形求符合条件的点P的坐标,以及所对应的a的值;
(3)已知直线y=x-
7
2
是“蛋圆”的切线,求满足条件的抛物线解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系内有两点A(-2,0),B(
1
2
,0),CB所在直线为y=2x+b,
(1)求b与C的坐标;
(2)连接AC,求证:△AOC△COB;
(3)求过A,B,C三点且对称轴平行于y轴的抛物线解析式;
(4)在抛物线上是否存在一点P(不与C重合),使得S△ABP=S△ABC?若存在,请求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系内,O为坐标原点,点A的坐标为(1,0),点B在x轴上且在点A的右端,OA=AB,分别过点A、B作x轴的垂线,与二次函数y=x2的图象交于C、D两点,分别过点C、D作y轴的垂线,交y轴于点E、F,直线CD交y轴于点H.
(1)验证:S矩形OACE:S梯形ECDF=2:9;
(2)如果点A的坐标改为(t,0)(t>0),其他条件不变,(1)的结论是否成立?请说明理由.
(3)如果点A的坐标改为(t,0)(t>0),二次函数改为y=ax2(a>0),其他条件不变,记点C、D的横坐标分别为xC、xD,点H的横坐标为yH,试证明:xCxD=-
1
a
yH

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=-x2+x+a(a<0),当自变量x取m时,其相应的函数值大于0,那么x取m-1时下列结论中正确的是(  )
A.m-1的函数值小于0
B.m-1的函数值大于0
C.m-1的函数值等于0
D.m-1的函数值与0的大小关系不确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(a),点F、G、H、E分别从正方形ABCD的顶点B、C、D、A同时出发,以1cm/s的速度沿着正方形的边向C、D、A、B运动.若设运动时间为x(s),问:
(1)四边形EFGH是什么图形?证明你的结论;
(2)若正方形ABCD的边长为2cm,四边形EFGH的面积为y(cm2),求y关于x的函数解析式和自变量x的取值范围;
(3)若改变点的连接方式(如图(b)),其余不变.则当动点出发几秒时,图中空白部分的面积为3cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,是某河床横断面的示意图.据该河段的水文资料显示,当水面宽为40米时,河水最深为2米.
(1)请在恰当的平面直角坐标系中求出与该抛物线型河床横断面对应的函数关系式;
(2)当水面宽度为36米时,一艘吃水深度(船底部到水面的距离)为1.8米的货船能否在这个河段安全通过?为什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知直角梯形纸片OABC在平面直角坐标系中的位置如图①所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,2
3
),C(0,2
3
),点P在线段OA上(不与O、A重合),将纸片折叠,使点A落在射线AB上(记为点A’),折痕PQ与射线AB交于点Q,设OP=x,折叠后纸片重叠部分的面积为y.(图②供探索用)
(1)求∠OAB的度数;
(2)求y与x的函数关系式,并写出对应的x的取值范围;
(3)y存在最大值吗?若存在,求出这个最大值,并求此时x的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案