精英家教网 > 初中数学 > 题目详情
4.如图,在等边三角形ABC中,BC=180,E,F分别是AB,AC的中点,点P从点B出发,沿折线段BE-EF以每秒6个单位长的速度向点F匀速运动,点Q从点C出发沿线段CB方向以每秒3个单位长的速度向点B匀速运动,点P,Q同时出发,当点P与点F重合时点P停止运动,点Q也随之停止,设点P的运动时间为t秒.
(1)当点P在线段BE上(除点B外)运动时,过点P作PN∥BC交FC于点N,作PM⊥BC,垂足为M,连接NQ,所得四边形PMQN是平行四边形吗?请证明你的结论.
你的结论:四边形PMQN是平行四边形;
证明:
(2)当点P在线段EF上运动时,是否存在PQ=FC?若存在,请求出t的值,若不存在,请说明理由.

分析 (1)由题意得:PB=6t,CQ=3t,由△ABC是等边三角形,得到∠B=∠C=60°,由于PN∥BC,于是得到PB=NC,根据PM⊥BC,得到∠PMQ=90°,求出BM=$\frac{1}{2}$PB=3t=CQ,推出△PBM≌△NCQ,得到PM=NQ,∠NQC=∠PMB=90°,于是证得四边形PMQN是矩形;
(2)当点P在AD上(即15≤t≤30)时,存在PQ=DC.有下列两种情况:①当PQ∥FC时,由于PF∥QC,所以四边形PQCF是平行四边形,根据四边形的对边相等即可得出t的值;②当PQ∥AB时,由EP∥BQ,可知四边形EBQP是平行四边形,根据四边形的对边相等即可得出t的值

解答 解:(1)四边形PMQN是平行四边形,
由题意得:PB=6t,CQ=3t,
∵△ABC是等边三角形,
∴∠B=∠C=60°,
∵PN∥BC,
∴PB=NC,
∵PM⊥BC,
∴∠PMQ=90°,
∴BM=$\frac{1}{2}$PB=3t=CQ,
在△PBM与△NQC中,
$\left\{\begin{array}{l}{PB=NC}\\{∠B=∠C}\\{BM=CQ}\end{array}\right.$,
∴△PBM≌△NCQ,
∴PM=NQ,∠NQC=∠PMB=90°,
∴四边形PMQN是平行四边形,
故答案为:四边形PMQN是平行四边形;

(2)∵BC=180,E,F分别是AB,AC的中点,
∴EF=$\frac{1}{2}$BC=90,BE=CF=90,
当点P在EF上(即15≤t≤30)时,存在PQ=FC.有下列两种情况:
①如图1,当PQ∥FC时,
∵PF∥QC
∴四边形PQCF是平行四边形
∴PQ=FC,PF=QC
此时180-6t=3t
解得:t=20;
②如图2,当PQ∥EB时,
∵EP∥BQ
∴四边形EBQP是平行四边形
∴EP=BQ
即:6t-90=180-3t
解得:t=30,
综上所述,当点P在EF边上运动时,存在PQ=FC,t=20或t=30.

点评 本题考查了全等三角形的判定和性质,平行四边形的判定和性质,等边三角形的性质,正确的理解题意画出图形是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

12.当x-$\frac{3}{2}$≤x<-1或x>-1 时,$\sqrt{2x+3}$+$\frac{1}{x+1}$在实数范围内有意义.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.把方程-5x2=-5x-3化为一般形式为5x2-5x-3=0,若一元二次方程ax2+bx+c=0(a≠0)有一根是1,则a+b+c=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图1,已知等边△ABC中,D为BC中点,DE∥AC交AB于E,M是AE上任意一点(M不与A,E重合),连接DM,作DN平分∠MDC交AC于N.
(1)求证:ED=DC;
(2)求证:EM+NC=DM;
(3)如图2,作DF⊥AC于F,若NF:FC=3:5,AM=4,连接MN将∠DMN沿MN翻折,翻折后的射线MD交AC于P,连接DP交MN于点Q.
①求△ABC的边长;②求PQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,将△ABC绕点C顺时针方向旋转40°,得△A′B′C,若AC⊥A′B′,则∠A等于(  )
A.50°B.60°C.70°D.80°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.下列因式分解中错误的是(  )
A.-mx-my=-m(x+y)B.a2-a-$\frac{1}{4}$=(a-$\frac{1}{2}$)2
C.1-9a2=(1+3a)(1-3a)D.$\frac{1}{4}$a2b2-1=($\frac{1}{2}$ab+1)($\frac{1}{2}$ab-1)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,已知AB∥DE,点C是BE上的一点,∠A=∠BCA,∠D=∠DCE.求证:AC⊥CD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,E,F分别是AB,CD上的一点,∠2=∠D,∠1与∠C互余,EC⊥AF,求证:AB∥CD.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.孔明同学参加暑假军事训练的射击成绩如下表:
射击
次序
第一次第二次第三次第四次
成绩
(环)
9879
则孔明射击成绩的中位数是(  )
A.6B.7C.8.5D.9

查看答案和解析>>

同步练习册答案