精英家教网 > 初中数学 > 题目详情
已知△ABC中,AB=15cm,BC=21cm,AC=30cm,另一个与它相似的△A′B′C′的最长边长为40cm,求△A′B′C′的其余两边的长.
分析:设△A′B′C′的其余两边的长度分别是x,y,根据三角形的相似性质列出比例式,求出x和y的值.
解答:解:设△A′B′C′的其余两边的长度分别是x,y,
根据题意,得
15
x
=
30
40
21
y
=
30
40

解得x=20,y=28,
答:△A′B′C的其余两边的长分别是20cm和28cm.
点评:本题考查相似三角形的性质.利用相似三角形的性质时,要注意相似比的顺序.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程证明△ABD≌△ACD的理由.
∵AD平分∠BAC,
∴∠BAD=∠
 
(角平分线的定义).
在△ABD和△ACD中,
(               )
(               )
(               )

∴△ABD≌△ACD
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知△ABC中,AB=AC,AD为BC边上的中线,BE为AC边上的高,
(1)在图中作出中线AD(要求用尺规作图,保留作图痕迹,不写作法与证明);
(2)设AD,BE交于点F,若∠ABC=70°,求∠DFB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC中,AB=20,AC=15,BC边上的高为12,则△ABC的周长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.
∵AD平分∠BAC
∴∠
BAD
BAD
=∠
CAD
CAD
(角平分线的定义)
在△ABD和△ACD中

∴△ABD≌△ACD
SAS
SAS

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:已知△ABC中,AB=17cm,BC=30cm,BC边上的中线AD=8cm.求证:△ABC是等腰三角形.

查看答案和解析>>

同步练习册答案