【题目】孝感市委市政府为了贯彻落实国家的“精准扶贫”战略部署,组织相关企业开展扶贫工作,博大公司为此制定了关于帮扶A、B两贫困村的计划.今年3月份决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗.已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:
目的地 费用 车型 | A村(元/辆) | B村(元/辆) |
大货车 | 800 | 900 |
小货车 | 400 | 600 |
(1)求这15辆车中大小货车各多少辆?
(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总运费为y元;
①试求出y与x的函数解析式;
②若运往A村的鱼苗不少于108箱,请你写出使总运费最少的货车调配方案,并求出最少运费.
【答案】(1)这15辆车中大货车用8辆,小货车用7辆;(2)①y=100x+9400(3≤x≤8,且x为整数);②使总运费最少的调配方案是:7辆大货车、3辆小货车前往A村;1辆大货车、4辆小货车前往B村.最少运费为10100元.
【解析】
(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;
(2)设前往A村的大货车为x辆,则前往B村的大货车为(8﹣x)辆,前往A村的小货车为(10﹣x)辆,前往B村的小货车为[7﹣(10﹣x)]辆,根据表格所给运费,求出y与x的函数关系式;
(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.
解:(1)设大货车用x辆,小货车用y辆,根据题意得:
,
解得:.
故这15辆车中大货车用8辆,小货车用7辆.
(2)y=800x+900(8﹣x)+400(10﹣x)+600[7﹣(10﹣x)]=100x+9400(3≤x≤8,且x为整数).
(3)由题意得:12x+8(10﹣x)≥108,
解得:x≥7,
又∵3≤x≤8,
∴7≤x≤8且为整数,
∵y=100x+9400,
k=100>0,y随x的增大而增大,
∴当x=7时,y最小,
最小值为y=100×7+9400=10100(元).
答:使总运费最少的调配方案是:7辆大货车、3辆小货车前往A村;1辆大货车、4辆小货车前往B村.最少运费为10100元.
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2经过点A(﹣2,﹣8).
(1)求此抛物线的函数解析式;
(2)写出这个二次函数图象的顶点坐标、对称轴;
(3)判断点B(﹣1,﹣4)是否在此抛物线上;
(4)求出此抛物线上纵坐标为﹣6的点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2﹣6x﹣k2=0(k为常数).
(1)求证:方程有两个不相等的实数根;
(2)设x1,x2为方程的两个实数根,且x1+2x2=14,试求出方程的两个实数根和k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一列匀速前进的火车,通过列车隧道.
(1)如果通过一个长300米的隧道AB,从车头进入隧道到车尾离开隧道,共用15秒的时间(如图1),又知其间在隧道顶部的一盏固定的灯发出的一束光垂直照射火车2.5秒,求这列火车的长度;
(2)如果火车以相同的速度通过了另一个隧道CD,从火车车尾全部进入隧道到火车车头刚好到达隧道出口(如图2),其间共用20秒时间,求这个隧道CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在数学兴趣小组活动中,小明进行数学探究活动.将大小不相同的正方形ABCD与正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.
(1)小明发现DG=BE且DG⊥BE,请你给出证明;
(2)如图2,小明将正方形ABCD绕点A转动,当点B恰好落在线段DG上时
①猜想线段DG和BE的位置关系是 .
②若AD=2,AE=,求△ADG的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误的是( )
A.扇形统计图能反映各部分在总体中所占的百分比
B.每天阅读30分钟以上的居民家庭孩子超过50%
C.每天阅读1小时以上的居民家庭孩子占20%
D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《庄子·天下》:“一尺之棰,日取其半,万世不竭.”意思是说:一尺长的木棍,每天截掉一半,永远也截不完.我国智慧的古代人在两千多年前就有了数学极限思想,今天我们运用此数学思想研究下列问题.
(规律探索)
(1)如图1所示的是边长为1的正方形,将它剪掉一半,则S阴影1=1-=__________;
如图2,在图1的基础上,将阴影部分再裁剪掉—半,则S阴影2=1--()2=_______;
同种操作,如图3,S阴影3=1--()2-()3=__________;
如图4,S阴影4=1--()2-()3-()4=___________;
……
若同种地操作n次,则S阴影n=1--()2-()3-…-()n=_________.
(规律归纳)
(2)直接写出+++…+的化简结果:_________.
(规律应用)
(3)直接写出算式+++…+的值:__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我县盛产不知火和脐橙两种水果 ,某公司计划用两种型号的汽车运输不知火和脐橙到外地销售,运输中要求每辆汽车都要满载满运,且只能装运一种水果.若用3辆汽车装运不知火,2辆汽车装运脐橙可共装载33吨,若用2辆汽车装运不知火,3辆汽车装运脐橙可共装载32吨.
(1)求每辆汽车可装载不知火或脐橙各多少吨?
(2)据调查,全部销售完后,每吨不知火可获利700元,每吨脐橙可获利500元,计划用20辆汽车运输,且脐橙不少于30吨,如何安排运输才能使公司获利最大,最大利润是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com