【题目】如图甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分别为B、P、D,且三个垂足在同一直线上,我们把这样的图形叫“三垂图”.
(1)证明:ABCD=PBPD.
(2)如图乙,也是一个“三垂图”,上述结论成立吗?请说明理由.
(3)已知抛物线与x轴交于点A(﹣1,0),B(3,0),与y轴交于点(0,﹣3),顶点为P,如图丙所示,若Q是抛物线上异于A、B、P的点,使得∠QAP=90°,求Q点坐标.
【答案】
(1)
证明:∵AB⊥BD,CD⊥BD,
∴∠B=∠D=90°,
∴∠A+∠APB=90°,
∵AP⊥PC,
∴∠APB+∠CPD=90°,
∴∠A=∠CPD,
∴△ABP∽△PCD,
∴ = ,
∴ABCD=PBPD
(2)
ABCD=PBPD仍然成立.
理由如下:∵AB⊥BD,CD⊥BD,
∴∠B=∠CDP=90°,
∴∠A+∠APB=90°,
∵AP⊥PC,
∴∠APB+∠CPD=90°,
∴∠A=∠CPD,
∴△ABP∽△PCD,
∴ = ,
∴ABCD=PBPD
(3)
设抛物线解析式为y=ax2+bx+c(a≠0),
∵抛物线与x轴交于点A(﹣1,0),B(3,0),与y轴交于点(0,﹣3),
∴ ,
解得 ,
所以,y=x2﹣2x﹣3,
∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴顶点P的坐标为(1,﹣4),
过点P作PC⊥x轴于C,设AQ与y轴相交于D,
则AO=1,AC=1+1=2,PC=4,
根据(2)的结论,AOAC=ODPC,
∴1×2=OD4,
解得OD= ,
∴点D的坐标为(0, ),
设直线AD的解析式为y=kx+b(k≠0),
则 ,
解得 ,
所以,y= x+ ,
联立 ,
解得 , (为点A坐标,舍去),
所以,点Q的坐标为( , ).
【解析】(1)根据同角的余角相等求出∠A=∠CPD,然后求出△ABP和△PCD相似,再根据相似三角形对应边成比例列式整理即可得证;(2)与(1)的证明思路相同;(3)利用待定系数法求出二次函数解析式,根据抛物线解析式求出点P的坐标,再过点P作PC⊥x轴于C,设AQ与y轴相交于D,然后求出PC、AC的长,再根据(2)的结论求出OD的长,从而得到点D的坐标,利用待定系数法求出直线AD的解析式,与抛物线解析式联立求解即可得到点Q的坐标.
科目:初中数学 来源: 题型:
【题目】已知在关于x的分式方程 ①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数.
(1)求k的取值范围;
(2)当方程②有两个整数根x1、x2 , k为整数,且k=m+2,n=1时,求方程②的整数根;
(3)当方程②有两个实数根x1、x2 , 满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:
①四边形CFHE是菱形;
②EC平分∠DCH;
③线段BF的取值范围为3≤BF≤4;
④当点H与点A重合时,EF=2 .
以上结论中,你认为正确的有 . (填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是( )
A.正比例函数
B.一次函数
C.反比例函数
D.二次函数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=2 .
(1)求证:AC是⊙O的切线;
(2)求由线段AC、AD与弧CD所围成的阴影部分的面积.(结果保留π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在Rt△ACB中,C为直角顶点,∠ABC=25°,O为斜边中点.将OA绕着点O逆时针旋转θ°(0<θ<180)至OP,当△BCP恰为轴对称图形时,θ的值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是半圆O的直径,点C在半圆O上,AB=5cm,AC=4cm.D是弧BC上的一个动点(含端点B,不含端点C),连接AD,过点C作CE⊥AD于E,连接BE,在点D移动的过程中,BE的取值范围是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com