精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,已知ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).

(1)若ABC经过平移后得到A1B1C1,已知点C1的坐标为(4,0),写出顶点A1B1的坐标,并画出A1B1C1

(2)若ABCA2B2C2关于原点O成中心对称图形,写出A2B2C2的各顶点的坐标;

(3)将ABC绕着点O按顺时针方向旋转90°得到A3B3C3,写出A3B3C3的各顶点的坐标,并画出A3B3C3

【答案】1)图形见解析;A1的坐标为(22),B1点的坐标为(3﹣2);(2)图形见解析;A23﹣5),B22﹣1),C21﹣3);(3)图形见解析;A353),B312),C331.

【解析】试题分析:(1)利用点C和点C1的坐标变化得到平移的方向与距离,然后利用此平移规律写出顶点A1B1的坐标;

2)根据关于原点对称的点的坐标特征求解;

3)利用网格和旋转的性质画出△A2B3C3,然后写出△A2B3C3的各顶点的坐标.

试题解析:(1)如图,△A1B1C1为所作,

因为点C﹣13)平移后的对应点C1的坐标为(40),

所以△ABC先向右平移5个单位,再向下平移3个单位得到△A1B1C1

所以点A1的坐标为(22),B1点的坐标为(3﹣2);

2)因为△ABC△A1B2C2关于原点O成中心对称图形,

所以A23﹣5),B22﹣1),C21﹣3);

3)如图,△A2B3C3为所作,A353),B312),C331);

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.

(1)在图1中画出钝角△ABC,使它的面积为6(画一个即可);

(2)在图2中画出△DEF,使它的三边长分别为、5(画一个即可).并且直接写出此时三角形DEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】己知:在等腰三角形ABC中,AB=AC,AD⊥BC于点D,以AC为边作等边三角形ACE,直线BE交直线AD于点F,连接FC.
(1)如图1,120°<∠BAC<180°,△ACE与△ABC在直线AC的异侧,且FC交AE于点M.

①求证:∠FEA=∠FCA;
②猜想线段FE,FA,FD之间的数量关系,并证明你的结论:
(2)当60°<∠BAC<120°,且△ACE与△ABC在直线AC的同侧时,利用图2画出图形探究线段FE,FA,FD之间的数量关系,并直接写出你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,直线y=x与反比例函数y=的图象交于关于原点对称的AB两点,已知A点的纵坐标是3

1)求反比例函数的表达式;

2)将直线y=x向上平移后与反比例函数在第二象限内交于点C,如果ABC的面积为48,求平移后的直线的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=60°,∠ACB=45°,AD、CF都是高,相交于点P,角平分线BE分别交AD、CF于Q、S,则图中的等腰三角形个数是( )

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】x24x+1化为(x+h2+k(其中hk是常数)的形式是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等边三角形,点D、E分别是BC边、AB边上的点,且BE=CD,连接AD、CE交于点F,过A作AH⊥CE于H,

(1)求证:∠BCE=∠CAD;
(2)直接写出∠CFD的度数;并写出线段AF与线段HF的数量关系.(无需解答过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】哈市某花卉种植基地欲购进甲、乙两种君子兰进行培育,若购进甲种2株,乙种3株,则共需要成本1700元;若购进甲种3株,乙种1株,则共需要成本1500元.
(1)求甲乙两种君子兰每株成本分别为多少元?
(2)该种植基地决定在成本不超过30000元的前提下购进甲、乙两种君子兰,若购进乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=90°,AB=CB,点E在边BC上,点F在边AB的延长线上,BE=BF.

(1)求证:△ABE≌△CBF;
(2)若∠CAE=30°,求∠ACF的度数.

查看答案和解析>>

同步练习册答案