分析 (1)根据非负数的性质可求出a和b,即可得到点A和B的坐标;
(2)由平行线的性质结合角平分线的定义可得则∠NDM-∠OAN=45°,再利用∠OAN=90°-∠ANO=90°-∠DNM,得到∠NDM-(90°-∠DNM)=45°,所以∠NDM+∠DNM=135°,然后根据三角形内角和定理得180°-∠NMD=135°,可求得∠NMD=45°;
(3)①连结OB,如图3,设F(0,t),根据S△AOF+S△BOF=S△AOB,得到关于t的方程,可求得t的值,则可求得点F的坐标;②先计算△ABC的面积,再分点P在y轴上和在x轴上讨论.当P点在y轴上时,设P(0,y),利用S△ABP=S△APF+S△BPF,可解得y的值,可求得P点坐标;当P点在x轴上时,设P(x,0),根据三角形面积公式得,同理可得到关于x的方程,可求得x的值,可求得P点坐标.
解答 解:
(1)∵(a+b)2+|a-b+6|=0,
∴a+b=0,a-b+6=0,
∴a=-3,b=3,
∴A(-3,0),B(3,3);
(2)如图2,
∵AB∥DE,
∴∠ODE+∠DFB=180°,
而∠DFB=∠AFO=90°-∠FAO,
∴∠ODE+90°-∠FAO=180°,
∵AM,DM分别平分∠CAB,∠ODE,
∴∠OAN=$\frac{1}{2}$∠FAO,∠NDM=$\frac{1}{2}$∠ODE,
∴∠NDM-∠OAN=45°,
而∠OAN=90°-∠ANO=90°-∠DNM,
∴∠NDM-(90°-∠DNM)=45°,
∴∠NDM+∠DNM=135°,
∴180°-∠NMD=135°,
∴∠NMD=45°,
即∠AMD=45°;
(3)①连结OB,如图3,
设F(0,t),
∵S△AOF+S△BOF=S△AOB,
∴$\frac{1}{2}$•3•t+$\frac{1}{2}$•t•3=$\frac{1}{2}$×3×3,解得t=$\frac{3}{2}$,
∴F点坐标为(0,$\frac{3}{2}$);
②存在.
△ABC的面积=$\frac{1}{2}$×7×3=$\frac{21}{2}$,
当P点在y轴上时,设P(0,y),
∵S△ABP=S△APF+S△BPF,
∴$\frac{1}{2}$•|y-$\frac{3}{2}$|•3+$\frac{1}{2}$•|y-$\frac{3}{2}$|•3=$\frac{21}{2}$,解得y=5或y=-2,
∴此时P点坐标为(0,5)或(0,-2);
当P点在x轴上时,设P(x,0),
则$\frac{1}{2}$•|x+3|•3=$\frac{21}{2}$,解得x=-10或x=4,
∴此时P点坐标为(-10,0),
综上可知存在满足条件的点P,其坐标为(0,5)或(0,-2)或(-10,0).
点评 本题为三角形的综合应用,涉及非负数的性质、角平分线的定义、平行线的性质、三角形内角和定理、三角形的面积、方程思想及分类讨论思想等知识.在(1)中注意非负数的性质的运用,在(2)利用三角形内角和及角平分线的性质等得到∠NDM+∠DNM=135°是解题的关键,在(3)中由三角形的面积得到关于点的坐标的方程是解题的关键.本题考查知识点较多,综合性较强,难度适中.
科目:初中数学 来源: 题型:选择题
A. | 2个 | B. | 3个 | C. | 4个 | D. | 5个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com