【题目】某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现, 销售量y(件)与销售单价x(元)符合一次函数,所调查的部分数据如表:
销售单价x(元) | 65 | 70 | 80 | … |
销售量y(件) | 55 | 50 | 40 | … |
(1)求出y与x之间的函数表达式;
(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少?
(3)销售单价定为多少元时,该商场获得的利润恰为500元?
【答案】(1)y=-x+120;(2)当销售单价定为87元时,商场可获得最大利润,最大利润是891元; (3)销售单价应定为70元
【解析】
(1)列出二元一次方程组解出k与b的值可求出一次函数的表达式;
(2)依题意求出W与x的函数表达式可推出当x=87时商场可获得最大利润;
(3)由w=500推出x2-180x+7700=0解出x的值即可.
解:(1)设销售量y(件)与销售单价x(元)符合一次函数y=kx+b
根据题意得
解得:
∴所求一次函数的表达式为y=-x+120;
(2)由题意知
W=(x-60)(-x+120)
=-x2+180x-7200
=-(x-90)2+900,
∵抛物线的开口向下,
∴当x<90时,W随x的增大而增大,
而销售单价不低于成本单价,且获利不得高于45%,
即60≤x≤60×(1+45%),
∴60≤x≤87,
∴当x=87时,W=-(87-90)2+900=891.
∴当销售单价定为87元时,商场可获得最大利润,最大利润是891元;
(3)如果在试销期间该服装部想要获得500元的利润,
∴500=-x2+180x-7200,
解为 x1=70,x2=110(不合题意舍去).
∴销售单价应定为70元
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的对角线AC与BD相交于点O.将∠COB绕点O顺时针旋转,设旋转角为α(0<α<90°),角的两边分别与BC,AB交于点M,N,连接DM,CN,MN,下列四个结论:①∠CDM=∠COM;②CN⊥DM;③△CNB≌△DMC;④AN2+CM2=MN2;其中正确结论的个数是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1).
(1)以O点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;
(2)B点的对应点B′的坐标是 ;C点的对应点C′的坐标是 ;
(3)在BC上有一点P(x,y),按(1)的方式得到的对应点P′的坐标是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.
(1)请直接写出D点的坐标.
(2)求二次函数的解析式.
(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,的顶点均在格点上,三个顶点的坐标分别为.
(1)将关于轴作轴对称变换得,则点的坐标为______.
(2)将绕原点按逆时针方向旋转得,则点的坐标为______.
(3)在(1)(2)的基础上,图中的,是中心对称图形,对称中心的坐标为______.
(4)若以点、、、为顶点的四边形为菱形,直接写出点的坐标为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+8与x轴相交于点A(﹣2,0)和点B(4,0),与y轴相交于点C,顶点为点P.点D(0,4)在OC上,联结BC、BD.
(1)求抛物线的表达式并直接写出点P的坐标;
(2)点E为第一象限内抛物线上一点,如果△COE与△BCD的面积相等,求点E的坐标;
(3)点Q在抛物线对称轴上,如果△BCD∽△CPQ,求点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上,若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长度始终相等?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求的度数.
如图,在中,,,点M,N是BD边上的任意两点,且,将绕点A逆时针旋转至位置,连接NH,试判断MN,ND,DH之间的数量关系,并说明理由.
在图中,连接BD分别交AE,AF于点M,N,若,,,求AG,MN的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com