精英家教网 > 初中数学 > 题目详情
1.如图,在△ABC中,∠A=90°,点D是AB边上的一点,过D点作BC的垂线,垂足为点E,已知:AB=4cm,BC=8cm,CD=7cm,则△DBE的周长为(  )
A.5cmB.6cmC.$\frac{9+3\sqrt{3}}{2}$cmD.8cm

分析 先根据勾股定理求出AC的长,进而可得出AD的长,故可得出BD的长,根据相似三角形的判定定理得出△BDE∽△BCA,由相似三角形的对应边成比例求出DE及BE的长,进而可得出结论.

解答 解:∵在△ABC中,∠A=90°,AB=4cm,BC=8cm,
∴AC=$\sqrt{{8}^{2}-{4}^{2}}$=4$\sqrt{3}$,
∵CD=7cm,
∴AD=$\sqrt{{7}^{2}-(4\sqrt{3})^{2}}$=1cm,
∴BD=4-1=3cm.
∵DE⊥BC,
∴∠BED=∠A=90°,
∴△BDE∽△BCA,
∴$\frac{BE}{AB}$=$\frac{DE}{AC}$=$\frac{BD}{BC}$,即$\frac{BE}{4}$=$\frac{DE}{4\sqrt{3}}$=$\frac{3}{8}$,
解得BE=$\frac{3}{2}$cm,DE=$\frac{3\sqrt{3}}{2}$,
∴△DBE的周长=3+$\frac{3}{2}$+$\frac{3\sqrt{3}}{2}$=$\frac{9+2\sqrt{3}}{2}$cm.
故选C.

点评 本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.如图,直线y=kx+2与x轴、y轴分别于A,B两点,其中$\frac{OB}{OA}$=$\frac{1}{2}$,点C,D分别为直线l:y=$\frac{1}{2}$x+1与x轴、y轴的交点.
(1)求A点的坐标和k的值;
(2)在直线l上存在一点P,使得S△AOB=$\frac{2}{3}$S△APB,求点P的坐标.
(3)点M是直线l上的一个动点,那么在x轴上是否存在点N,使得△MON为等腰直角三角形?若存在,请直接写出点M以及对应的点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.若(x-2016)2x=1,则x=0,2015或2017.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.在直角坐标平面内,已知点A(-$\sqrt{3}$,2),B(3-$\sqrt{3}$,2),那么A、B两点间的距离为3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,△ABC中,∠BAC=60°,∠B=45°,AB=2,点D是BC上的一个动点,D点关于AB,AC的对称点分别是E和F,四边形AEGF是平行四边形,则四边形AEGF的面积的最小值是$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,经过点A(0,-4)的抛物线y=$\frac{1}{2}$x2+bx+c与x轴相交于点B(-1,0)和C,O为坐标原点.

(1)求抛物线的解析式;
(2)将抛物线y=$\frac{1}{2}$x2+bx+c向上平移$\frac{7}{2}$个单位长度,再向左平移m(m>0)个单位长度,得到新抛物线,若新抛物线的顶点P在△ABC内,求m的取值范围;
(3)将x轴下方的抛物线图象关于x轴对称,得到新的函数图象C,若直线y=x+k与图象C始终有3个交点,求满足条件的k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在△ABC中,AB=AC=10,sinB=$\frac{3}{5}$,
(1)求边BC的长;
(2)将△ABC绕着点C旋转得△A′B′C,点A的对应点A′,点B的对应点B′.如果点A′在BC边上,那么点B和点B′之间的距离等于多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为108°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.若|x2-4x+3|=kx+3有且只有两个不相等的实数根,则k的取值范围是-3≤k<-1或k>-4-2$\sqrt{6}$.

查看答案和解析>>

同步练习册答案