【题目】如图,四边形ABCD是正方形,连接AC,将绕点A逆时针旋转α得,连接CF,O为CF的中点,连接OE,OD.
(1)如图1,当时,请直接写出OE与OD的关系(不用证明).
(2)如图2,当时,(1)中的结论是否成立?请说明理由.
(3)当时,若,请直接写出点O经过的路径长.
【答案】(1),,理由见解析;(2)当时,(1)中的结论成立,理由见解析;(3)点O经过的路径长为.
【解析】
(1)根据直角三角形斜边上的中线等于斜边一半的性质可得OD与OE的数量关系;根据旋转的性质和正方形的性质可得AC=AF以及△ACF各内角的度数,进一步即可求出∠COE与∠DOF的度数,进而可得OD与OE的位置关系;
(2)延长EO到点M,使,连接DM、CM、DE,如图2所示,先根据SAS证明≌,得,,再根据正方形的性质和旋转的性质推得,进一步在△ACF中根据三角形内角和定理和正方形的性质得出,再一次运用SAS推出≌,于是,进一步即可得出OE、OD的位置关系,然后再运用SAS推出≌,即可得OD与OE的数量关系;
(3)连接AO,如图3所示,先根据等腰三角形三线合一的性质得出,即可判断点O的运动路径,由可得点O经过的路径长,进一步即可求得结果.
解:(1),;理由如下:
由旋转的性质得:,,
∵四边形ABCD是正方形,∴,
∴,
∴,
∵,O为CF的中点,∴,
同理:,∴,
∴,,
∴,∴;
(2)当时,(1)中的结论成立,理由如下:
延长EO到点M,使,连接DM、CM、DE,如图2所示:
∵O为CF的中点,∴,
在和中,,
∴≌(SAS),∴,.
∵四边形ABCD是正方形,∴,,
∵绕点A逆时针旋转α得,
∴,,
∴,,
∵,,,
∴,
∵,,∴,
在中,∵,
∴,
∵,∴,∴,
在和中,,
∴≌(SAS),∴,
∵,∴,
在和中,,
∴≌(SAS),∴.
∴,∴,;
(3)连接AO,如图3所示:
∵,,∴,∴,
∴点O在以AC为直径的圆上运动,
∵,∴点O经过的路径长等于以AC为直径的圆的周长,
∵,∴点O经过的路径长为:.
科目:初中数学 来源: 题型:
【题目】随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五一”长假期间旅游情况统计图,根据以下信息解答下列问题:
(1)2017年“五一”期间,该市周边景点共接待游客 万人,扇形统计图中A景点所对应的圆心角的度数是 ,并补全条形统计图.
(2)根据近几年到该市旅游人数增长趋势,预计2018年“五一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?
(3)甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形的边长为4,延长至使,以为边在上方作正方形,延长交于,连接、,为的中点,连接分别与、交于点、.则下列结论:①;②;③;④.其中正确的结论有( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】由特殊到一般、类比、转化是数学学习和研究中经常用到的思想方法,下面是对一道几何题进行变式探究的思路,请你运用上述思想方法完成探究任务.
问题情境:在四边形中,是对角线,为边上一点,连接.以为旋转中心,将线段顺时针旋转,旋转角与相等,得到线段,连接.
(1)特例如图1,若四边形是正方形,则与位置关系是_________.此时可以过点作的平行线来对结论进行证明(这里不要求证明)
(2)拓展探究:如图2,若四边形是菱形,当时,求的度数;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明同学在综合实践活动中对本地的一座古塔进行了测量.如图,他在山坡坡脚P处测得古塔顶端M的仰角为60°,沿山坡向上走25m到达D处,测得古塔顶端M的仰角为30°.已知山坡坡度i=3:4,即tanθ=,请你帮助小明计算古塔的高度ME.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线与x轴、y轴分别相交于A,B两点,与反比例函数在第二象限内交于点C,且点B是的中点.
(1)求点C的坐标及k的值;
(2)求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个矩形的面积为96000000cm2,第一次截去它的,第二次截去剩下的,如此截下去,第六次截去后剩余图形的面积为_____cm2,用科学记数法表示剩余图形的面积为_____cm2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,∠C=90°,点D在AC上,且CD>DA,DA=2.点P、Q同时从D点出发,以相同的速度分别沿射线DC、射线DA运动.过点Q作AC的垂线段QR,使QR=PQ,联接PR.当点Q到达A时,点P、Q同时停止运动.设PQ=x.△PQR和△ABC重合部分的面积为S.S关于x的函数图像如图2所示(其中0<x≤,<x≤m时,函数的解析式不同)
(1)填空:n的值为___________;
(2)求S关于x的函数关系式,并写出x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC顶点的坐标分别为A(﹣3,3),B(﹣5,2),C(﹣1,1).
(1)以点C为位似中心,作出△ABC的位似图形△A1B1C,使其位似比为1:2,且ABC位于点C的异侧,并表示出点A1的坐标.
(2)作出△ABC绕点C顺时针旋转90°后的图形△A2B2C.
(3)在(2)的条件下求出点B经过的路径长(结果保留π).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com