【题目】如图所示,OE是∠AOD的平分线,OC是∠BOD的平分线.
(1)若∠AOB=130°,则∠COE是多少度?
(2)在(1)的条件下,若∠COD=20°,则∠BOE是多少度?
【答案】(1) 65°(2) 85°
【解析】试题分析:(1)直接根据角平分线的定义进行解答即可;
(2)先根据∠COD=20°求出∠BOD的度数,再根据∠AOB=130°求出∠AOD的度数,根据角平分线的定义即可得出结论.
试题解析:(1)∵OC是∠AOD的平分线,OE是∠BOD的平分线,∠AOB=130°
∴∠COE=∠BOD+∠AOD=(∠BOD+∠AOD)=∠AOB=65°;
(2)∵∠COD=20°,
∴∠BOD=2×20°=40°,
∵∠AOB=130°,
∴∠AOD=∠AOB-∠BOD=130°-40°=90°,
∵OE是∠BOD的平分线,
∴∠BOE=∠AOD+∠BOD=×90°+40°=85°.
科目:初中数学 来源: 题型:
【题目】△ABC中,∠C=90°,∠A=60°,AC=2cm.长为1cm的线段MN在△ABC的边AB上沿AB方向
以1cm/s的速度向点B运动(运动前点M与点A重合).过M,N分别作AB的垂线交直角边于P,Q两点,线段MN运动的时间为ts.
(1)若△AMP的面积为y,写出y与t的函数关系式(写出自变量t的取值范围);
(2)线段MN运动过程中,四边形MNQP有可能成为矩形吗?若有可能,求出此时t的值;若不可能,说明理由;
(3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小红同学要测量A、C两地的距离,但A、C之间有一水池,不能直接测量,于是她在A、C同一水平面上选取了一点B,点B可直接到达A、C两地.她测量得到AB=80米,BC=20米,∠ABC=120°.请你帮助小红同学求出A、C两点之间的距离.(参考数据 ≈4.6)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.
(1)、求证:DE⊥AG;
(2)、如图2,正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°),得到正方形OE′F′G′;
①在旋转过程中,当∠OAG′是直角时,求α的度数;
②若正方形ABCD的边长为2,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学习了有理数的乘法后,老师给同学们布置这样一道题目:计算49 ×(–5),看谁算的又快又对,有三位同学的解法如下:
小军:原式 =(49 + )×(–5)= 49×(–5)+ ×(–5)
=–245–4=–249;
小明:原式 = – × 5 = – = – 249 ;
小丽:原式 =(49 + )×(-5)=(50 -1 + )×(-5)
=(50 - )×(-5)= 50 ×(-5)+( - ) ×(-5)
= –250 += –249;
(1)对于以上三种解法,你认为谁的解法较好?
(2)上面的解法对你有何启发,用你认为最合适的方法计算:
19 ×(– 8)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小红同学要测量A、C两地的距离,但A、C之间有一水池,不能直接测量,于是她在A、C同一水平面上选取了一点B,点B可直接到达A、C两地.她测量得到AB=80米,BC=20米,∠ABC=120°.请你帮助小红同学求出A、C两点之间的距离.(参考数据 ≈4.6)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.
(1)求证:△PCE≌△EDQ;
(2)延长PC,QD交于点R.如图2,若∠MON=150°,求证:△ABR为等边三角形;
(3)如图3,若△ARB∽△PEQ,求∠MON大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列算式:12-02=1+0=1,,22-12=2+1=3,32-22=3+2=5,42-32=4+3=7 ,52-42=5+4=9,…….
若字母 表示自然数,请把你观察到的规律用含有 的式子表示出来________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com