精英家教网 > 初中数学 > 题目详情

锐角α和钝角β的取值范围是


  1. A.
    α<90°,β>90°
  2. B.
    0°<α<90°,β>90°
  3. C.
    0°<α<90°,90°<β<180°
  4. D.
    α<0°,90°<β≤180°
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,边长为1的正方形ABCD中,以A为圆心,1为半径作
BD
,将一块直角三角板的直角顶点P放置在
BD
(不包括端点B、D)上滑动,一条直角边通过顶点A,另一条直角边与边BC相交于点Q,连接PC,并设PQ=x,以下我们对精英家教网△CPQ进行研究.
(1)△CPQ能否为等边三角形?若能,则求出x的值;若不能,则说明理由;
(2)求△CPQ周长的最小值;
(3)当△CPQ分别为锐角三角形、直角三角形和钝角三角形时分别求x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•贵阳)在△ABC中,BC=a,AC=b,AB=c,设c为最长边,当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).
(1)当△ABC三边分别为6、8、9时,△ABC为
锐角
锐角
三角形;当△ABC三边分别为6、8、11时,△ABC为
钝角
钝角
三角形.
(2)猜想,当a2+b2
c2时,△ABC为锐角三角形;当a2+b2
c2时,△ABC为钝角三角形.
(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(贵州贵阳卷)数学(解析版) 题型:解答题

在△ABC中,BC=a,AC=b,AB=c,设c为最长边,当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).

(1)当△ABC三边分别为6、8、9时,△ABC为      三角形;当△ABC三边分别为6、8、11时,△ABC为      三角形.

(2)猜想,当a2+b2      c2时,△ABC为锐角三角形;当a2+b2      c2时,△ABC为钝角三角形.

(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.

 

查看答案和解析>>

科目:初中数学 来源:湖北省中考真题 题型:解答题

在- 次数学活动课上,老师出了- 道题:
  (1) 解方程x2-2x-3=0.
     巡视后老师发现同学们解此题的方法有公式法、配方法和十字相乘法( 分解因式法) 。
   接着, 老师请大家用自己熟悉的方法解第二道题:
  (2) 解关于x 的方程mx2+(m -3)x -3=0(m 为常数,且m ≠0).
     老师继续巡视,及时观察、点拨大家. 再接着, 老师将第二道题变式为第三道题:
(3) 已知关于x 的函数y=mx2+(m-3)x-3(m 为常数).
  ①求证:不论m 为何值, 此函数的图象恒过x 轴、y 轴上的两个定点( 设x 轴上的定点为A ,y 轴上的定点为C) ;    
   ②若m ≠0 时, 设此函数的图象与x 轴的另一个交点为反B, 当△ABC 为锐角三角形时, 求m 的取值范围;当△ABC 为钝角三角形时,观察图象,直接写出m 的取值范围.
    请你也用自己熟悉的方法解上述三道题.    

查看答案和解析>>

科目:初中数学 来源: 题型:

在-次数学活动课上,老师出了-道题:

  (1)解方程x2-2x-3=0.

    巡视后老师发现同学们解此题的方法有公式法、配方法和十字相乘法(分解因式法)。

  接着,老师请大家用自己熟悉的方法解第二道题:

  (2)解关于x的方程mx2+(m一3)x一3=0(m为常数,且m≠0).

    老师继续巡视,及时观察、点拨大家.再接着,老师将第二道题变式为第三道题:

(3)已知关于x的函数y=mx2+(m-3)x-3(m为常数).

 ①求证:不论m为何值,此函数的图象恒过x轴、y轴上的两个定点(设x轴上的定点为A,y轴上的定点为C);   

  ②若m≠0时,设此函数的图象与x轴的另一个交点为反B,当△ABC为锐角三角形时,求m的取值范围;当△ABC为钝角三角形时,观察图象,直接写出m的取值范围.

   请你也用自己熟悉的方法解上述三道题.   

查看答案和解析>>

同步练习册答案