精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,反比例函数y= (x>0)的图象上有一点A(m,4),过点A作AB⊥x轴于点B,将点B向右平移2个单位长度得到点C,过点C作y轴的平行线交反比例函数的图象于点D,CD=

(1)点D的横坐标为(用含m的式子表示);
(2)求反比例函数的解析式.

【答案】
(1)m+2
(2)

解:∵CD//y轴,CD=

∴点D的坐标为:(m+2, ),

∵A,D在反比例函数y= (x>0)的图象上,

∴4m= (m+2),

解得:m=1,

∴点A的坐标为(1,4),

∴k=4m=4,

∴反比例函数的解析式为:y=


【解析】解:(1)∵A(m,4),AB⊥x轴于点B,
∴B的坐标为(m,0),
∵将点B向右平移2个单位长度得到点C,
∴点C的坐标为:(m+2,0),
∵CD//y轴,
∴点D的横坐标为:m+2;
所以答案是:m+2;

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两人5次射击命中的环数如下:

7

9

8

6

10

7

8

9

8

8

则以下判断中正确的是(
A. = , S2=S2
B. = , S2>S2
C. = , S2<S2
D. , S2<S2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:德国著名数学家高斯被认为是历史上最重要的数学家之一,并有"数学王子"的美誉.高斯从小就善于观察和思考.在他读小学时候就能在课堂上快速的计算出,今天我们可以将高斯的做法归纳如下:

(右边相加100+1=2+99=3+98=…..=100+1100组)

①+②:有2S=101x100 解得:

(1)请参照以上做法,回答,3+5+7+9+…..+97=

请尝试解决下列问题:

如下图,有一个形如六边形的点阵,它的中心是一个点,算第一层,第二层每边有两个点,第三层每边有三个点,依此类推.

(2)填写下表:

层数

1

2

3

4

该层对应的点数

1

6

12

18

所有层的总点数的和

1

7

19

写出第n层所对应的点数;n≥2)

②如果某一层共96个点,求它是第几层;

③写出n层的六边形点阵的总点数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点CAB上,点M、N分别是AC、BC的中点,

(1)AC=12cm,BC=10cm,求线段MN的长;

(2)若点C为线段AB上任意一点,满足AC+BC=acm,其它条件不变,你能猜想MN的长度吗?并说明理由;

(3)若点C在线段AB的延长线上,且满足AC-BC=bcm,点M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,并说明理由.请用一句简洁的话描述你发现的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AD平分∠BAC,CDAD于点D,DCB=B.若AC=10,AB=25,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A、B都在数轴上,O为原点.

(1)B表示的数是_________________;

(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是________;

(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着我市社会经济的发展和交通状况的改善,我市的旅游业得到了高速发展某旅游公司对我市一企业个人旅游年消费情况进行问卷调查随机抽取部分员工,记录每个人年消费金额,并将调查数据适当整理,绘制成如下两幅尚不完整的表和图:

组别

个人年消费金额

频数

频率

A

18

B

a

b

C

D

24

E

12

合计

c

根据以上信息解答下列问题:

________; ________; ________;

补全频数分布直方图;

若这个企业有3000名员工,请你估计个人旅游年消费金额在6000元以上的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2 , 若y1≠y2 , 取y1、y2中的较小值记为M;若y1=y2 , 记M=y1=y2 . 下列判断: ①当x>2时,M=y2
②当x<0时,x值越大,M值越大;
③使得M大于4的x值不存在;
④若M=2,则x=1.
其中正确的有(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:
(1)求扇形统计图中m的值,并补全条形统计图;
(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?
(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理?

查看答案和解析>>

同步练习册答案