精英家教网 > 初中数学 > 题目详情

如图,点O在直线AB上,且OD⊥OE,垂足为O,若∠AOD=32°,则∠BOE的度数是


  1. A.
    58°
  2. B.
    64°
  3. C.
    68°
  4. D.
    74°
A
分析:首先OD⊥OE得出∠DOE=90°,再由已知∠AOD=32°得出∠BOE=180°-∠DOE-∠AOD,从而求出∠BOE的度数.
解答:∵OD⊥OE,
∴∠DOE=90°,
已知∠AOD=32°,
∴∠BOE=180°-∠DOE-∠AOD
=180°-90°-32°
=58°,
故选:A.
点评:此题考查的知识点是垂线的定义,关键由OD⊥OE得出∠DOE=90°.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、如图,点O在直线AB上,∠COB=∠DOE=90°,那么图中相等的角的对数和互余两角的对数分别为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

34、如图,点O在直线AB上,射线CO与AB交于点O,OE、OD分别是∠AOC、∠BOC的角平分线,求∠DOE的度数,并写出∠COD的余角.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点O在直线AB上,且OC⊥OD,若∠COA=36°,则∠DOB的大小为
54°
54°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点O在直线AB上,OD是∠AOC的平分线,OE是∠COB的平分线.
(1)求∠DOE的度数;
(2)如果∠AOD=51°12′,求∠BOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点O在直线AB上,∠AOD=22°30′,∠BOC=45°,OE平分∠BOC,则∠EOC的补角是(  )

查看答案和解析>>

同步练习册答案