精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图△ABC中,AB=AC,AD和BE是高,它们交于点H,且AE=BE,求证:AH=2BD.
分析:△ABC中,AB=AC,AD是底边上的高,则BC=2BD,又∵BE是高,所以,∠AEH=∠BEC=90°,∠HAE+∠AHE=∠DAC+∠C,所以,∠AHE=∠C,所以,△AHE≌△BCE,则AH=BC,即AH=2BD.
解答:精英家教网证明:∵在△ABC中,AB=AC,
∴△ABC是等腰三角形,AD是底边上的高,
∴BC=2BD,
又∵BE是高,
∴∠AEH=∠ADC=90°,
则∠DAC+∠AHE=∠DAC+∠C=90°,
∴∠AHE=∠C,
在△AHE和△BCE中,
∠AHE=∠C
∠AEH=∠BEC
AE=BE

∴△AHE≌△BCE(AAS),
∴AH=BC,又BC=2BD,
∴AH=2BD.
点评:本题主要考查了等腰三角形的性质和全等三角形的判定与性质,证明两个三角形全等,是证明线段或角相等的重要工具;在判定三角形全等时,关键是选择恰当的判定条件.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知,如图△ABC中,AD为△ABC的角平分线,求证:AB•DC=AC•BD.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1998•河北)已知:如图△ABC中,∠A的平分线AD交BC于D,⊙O过点A,且与BC相切于D,与AB、AC分别相交于E、F,AD与EF相交于G.
(1)求证:AF•FC=GF•DC;
(2)已知AC=6cm,DC=2cm,求FC、GF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图△ABC中,∠ACB=90°,D是AC上任意一点,DE⊥AB于E,M,N分别是BD,CE的中点,求证:MN⊥CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图△ABC中,AB=AC,CD⊥AD于D,CD=
12
BC,D在△ABC外,求证:∠ACD=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图△ABC中,D、E、F分别是三角形三边中点,△ABC的周长为30,面积为48,则△DEF的周长为
15
15
,面积为
12
12

查看答案和解析>>

同步练习册答案